Download or read book Methods and Applications of Singular Perturbations written by Ferdinand Verhulst and published by Springer Science & Business Media. This book was released on 2006-06-04 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
Download or read book Singular Perturbation Methods in Control written by Petar Kokotovic and published by SIAM. This book was released on 1999-01-01 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.
Download or read book Mathematical Models for Phase Change Problems written by J.F. Rodriques and published by Birkhäuser. This book was released on 2013-03-07 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph collects research and expository articles reflect ing the interaction and the cooperation of different groups in several European institut ions concerning current research on mathematical models for the behaviour of materials with phase change. These papers were presented and discussed in a Workshop held at Obidos, Portugal, du ring the first three days of October, 1988, and grew out of a two year period of intensive exploitation of differ ent abilities and mathematical experiences of the six participating groups, namely, in the University of Augsburg, wh ich was the co ordination center of this project, the Laboratoire Central des Ponts et Chaussees of Paris, the Aristoteles University of Thessaloniki, the University of Florence, the University of Lisbon and the University of Oxford. This project was carried out under the title "Mathemat ical Models of Phase Transitions and Numerical Simulation", in the framework of twinning program for stimulation of cooperation and scientific interchange, sponsored by the European Community. The underlying idea of the project was to create and study the mathematical models arising in applied engineering problems with free boundaries in a broad sense, namely in melting and freezing problems, diffusion-reaction processes, solid-solid phase transition, hysteresis phenomena, "mushy region" descriptions, contact prob lems with friction andjor adhesion, elastoplastic deformations, etc. vi This large spectrum of applied problems have in common the main feature of brusque transitions of their qualitative behaviour that correspond, in general, to non-classical discontinuous monotone or non monotone strong nonlinearities in the mathematical equations
Download or read book Two Point Boundary Value Problems Lower and Upper Solutions written by C. De Coster and published by Elsevier. This book was released on 2006-03-21 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes
Download or read book Dynamics of Internal Layers and Diffusive Interfaces written by Paul C. Fife and published by SIAM. This book was released on 1988-01-01 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interfacial phenomena are commonplace in physics, chemistry, biology, and in various disciplines bridging these fields. They occur whenever a continuum is present which can exist in at least two different chemical or physical "states," and there is some mechanism which generates or enforces a spatial separation between these states. The separation boundary is then called an interface. In the examples studied here, the separation boundary, and its internal structure, result from the balance between two opposing tendencies: a diffusive effect which attempts to mix and smooth the properties of the material, and a physical or chemical mechanism which works to drive it to one or the other pure state. This volume is unique in that the treatment of flames, as well as internal layer dynamics "including curvature effects," is more detailed and systematic than in publications.
Download or read book SIAM Journal on Mathematical Analysis written by Society for Industrial and Applied Mathematics and published by . This book was released on 1987 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Analysis as a Tool in Mathematical Physics written by Pavel Kurasov and published by Springer Nature. This book was released on 2020-07-14 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boris Pavlov (1936-2016), to whom this volume is dedicated, was a prominent specialist in analysis, operator theory, and mathematical physics. As one of the most influential members of the St. Petersburg Mathematical School, he was one of the founders of the Leningrad School of Non-self-adjoint Operators. This volume collects research papers originating from two conferences that were organized in memory of Boris Pavlov: “Spectral Theory and Applications”, held in Stockholm, Sweden, in March 2016, and “Operator Theory, Analysis and Mathematical Physics – OTAMP2016” held at the Euler Institute in St. Petersburg, Russia, in August 2016. The volume also includes water-color paintings by Boris Pavlov, some personal photographs, as well as tributes from friends and colleagues.
Download or read book Journal of the Korean Mathematical Society written by and published by . This book was released on 1994 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Physics Briefs written by and published by . This book was released on 1988 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Modeling and Analysis of Modern Fluid Problems written by Liancun Zheng and published by Academic Press. This book was released on 2017-04-26 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and Analysis of Modern Fluids helps researchers solve physical problems observed in fluid dynamics and related fields, such as heat and mass transfer, boundary layer phenomena, and numerical heat transfer. These problems are characterized by nonlinearity and large system dimensionality, and 'exact' solutions are impossible to provide using the conventional mixture of theoretical and analytical analysis with purely numerical methods. To solve these complex problems, this work provides a toolkit of established and novel methods drawn from the literature across nonlinear approximation theory. It covers Padé approximation theory, embedded-parameters perturbation, Adomian decomposition, homotopy analysis, modified differential transformation, fractal theory, fractional calculus, fractional differential equations, as well as classical numerical techniques for solving nonlinear partial differential equations. In addition, 3D modeling and analysis are also covered in-depth. - Systematically describes powerful approximation methods to solve nonlinear equations in fluid problems - Includes novel developments in fractional order differential equations with fractal theory applied to fluids - Features new methods, including Homotypy Approximation, embedded-parameter perturbation, and 3D models and analysis
Download or read book Hemivariational Inequalities written by Panagiotis D. Panagiotopoulos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the present book is the formulation, mathematical study and numerical treatment of static and dynamic problems in mechanics and engineering sciences involving nonconvex and nonsmooth energy functions, or nonmonotone and multivalued stress-strain laws. Such problems lead to a new type of variational forms, the hemivariational inequalities, which also lead to multivalued differential or integral equations. Innovative numerical methods are presented for the treament of realistic engineering problems. This book is the first to deal with variational theory of engineering problems involving nonmonotone multivalue realations, their mechanical foundation, their mathematical study (existence and certain approximation results) and the corresponding eigenvalue and optimal control problems. All the numerical applications give innovative answers to as yet unsolved or partially solved engineering problems, e.g. the adhesive contact in cracks, the delamination problem, the sawtooth stress-strain laws in composites, the shear connectors in composite beams, the semirigid connections in steel structures, the adhesive grasping in robotics, etc. The book closes with the consideration of hemivariational inequalities for fractal type geometries and with the neural network approach to the numerical treatment of hemivariational inequalities.
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1974 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book OAR Cumulative Index of Research Results written by and published by . This book was released on 1967 with total page 1264 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Some Semilinear Elliptic Systems Without Variational Structure written by Manuel Adrián Del Pino and published by . This book was released on 1992 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Asymptotic Methods for the Fokker Planck Equation and the Exit Problem in Applications written by Johan Grasman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the Itô calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.
Download or read book Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations written by F. Zanolin and published by Springer. This book was released on 2014-05-04 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The area covered by this volume represents a broad choice of some interesting research topics in the field of dynamical systems and applications of nonlinear analysis to ordinary and partial differential equations. The contributed papers, written by well known specialists, make this volume a useful tool both for the experts (who can find recent and new results) and for those who are interested in starting a research work in one of these topics (who can find some updated and carefully presented papers on the state of the art of the corresponding subject).
Download or read book Applications of the Topological Derivative Method written by Antonio André Novotny and published by Springer. This book was released on 2018-12-28 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.