Download or read book Principles of Artificial Intelligence written by Nils J. Nilsson and published by Morgan Kaufmann. This book was released on 2014-06-28 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of the control strategies used. Principles of Artificial Intelligenceevolved from the author's courses and seminars at Stanford University and University of Massachusetts, Amherst, and is suitable for text use in a senior or graduate AI course, or for individual study.
Download or read book A Text Book Of Artificial Intelligence Principles And Applications written by Mr. Sanjay Kumar Rai and published by Academic Guru Publishing House. This book was released on 2023-11-09 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Textbook of AI: Principles and Applications is an indispensable guide that illuminates the intricate realm of Artificial Intelligence (AI) with a blend of theoretical depth and practical insights. Authored to cater to the needs of students, educators, and professionals, this comprehensive text transcends traditional boundaries to offer a holistic understanding of AI’s core principles and diverse applications. Structured with clarity and precision, the book navigates through the foundational concepts of AI, including machine learning, neural networks, natural language processing, and computer vision. The narrative seamlessly integrates theoretical underpinnings with real-world examples and case studies, providing readers with a robust foundation for applying AI techniques in various domains. What sets this textbook apart is its conscientious approach to the ethical dimensions of AI. In a landscape where ethical considerations are paramount, the book explores the responsible deployment of AI, addressing societal implications and fostering a nuanced understanding of the ethical challenges associated with AI technologies. A Textbook of AI is not merely an academic resource but a practical compass for those navigating the evolving landscape of AI. With its comprehensive coverage, insightful examples, and ethical considerations, this book is poised to be an essential companion for anyone seeking to comprehend, contribute, and ethically apply AI principles in today’s dynamic technological landscape.
Download or read book Activity Based Intelligence Principles and Applications written by Patrick Biltgen and published by Artech House. This book was released on 2016-01-01 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new resource presents the principles and applications in the emerging discipline of Activity-Based Intelligence (ABI). This book will define, clarify, and demystify the tradecraft of ABI by providing concise definitions, clear examples, and thoughtful discussion. Concepts, methods, technologies, and applications of ABI have been developed by and for the intelligence community and in this book you will gain an understanding of ABI principles and be able to apply them to activity based intelligence analysis. The book is intended for intelligence professionals, researchers, intelligence studies, policy makers, government staffers, and industry representatives. This book will help practicing professionals understand ABI and how it can be applied to real-world problems.
Download or read book ARTIFICIAL INTELLIGENCE written by Chandra S.S., Vinod and published by PHI Learning Pvt. Ltd.. This book was released on 2020-10-01 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primarily intended for the undergraduate and postgraduate students of computer science and engineering, this textbook (earlier titled as Artificial Intelligence and Machine Learning), now in its second edition, bridges the gaps in knowledge of the seemingly difficult areas of artificial intelligence. This book promises to provide the most number of case studies and worked-out examples among the books of its genre. The text is written in a highly interactive manner which fulfils the curiosity of any reader. Moreover, the content takes off from the introduction to artificial intelligence, which is followed by explaining about intelligent agents. Various problem-solving strategies, knowledge representation schemes are also included with numerous case studies and applications. Different aspects of learning, nature-inspired learning, along with natural language processing are also explained in depth. The algorithms and pseudo codes for each topic make this book useful for students. Book also throws light into areas like planning, expert system and robotics. Book concludes with futuristic artificial intelligence, which explains the fascinating applications, that the world will witness in coming years. KEY FEATURES • Day-to-day examples and practical representations for deeper understanding of the subject. • Learners can easily implement the AI applications. • Effective and useful case studies and worked-out examples for AI problems. Target Audience • Students of B.E./B.Tech Computer Science Engineering • Students of M.E./M.Tech Computer Science Engineering
Download or read book Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries written by Shmelova, Tetiana and published by IGI Global. This book was released on 2019-10-11 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.
Download or read book Artificial Intelligence in Surgery Understanding the Role of AI in Surgical Practice written by Daniel A. Hashimoto and published by McGraw Hill Professional. This book was released on 2021-03-08 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build a solid foundation in surgical AI with this engaging, comprehensive guide for AI novices Machine learning, neural networks, and computer vision in surgical education, practice, and research will soon be de rigueur. Written for surgeons without a background in math or computer science, Artificial Intelligence in Surgery provides everything you need to evaluate new technologies and make the right decisions about bringing AI into your practice. Comprehensive and easy to understand, this first-of-its-kind resource illustrates the use of AI in surgery through real-life examples. It covers the issues most relevant to your practice, including: Neural Networks and Deep Learning Natural Language Processing Computer Vision Surgical Education and Simulation Preoperative Risk Stratification Intraoperative Video Analysis OR Black Box and Tracking of Intraoperative Events Artificial Intelligence and Robotic Surgery Natural Language Processing for Clinical Documentation Leveraging Artificial Intelligence in the EMR Ethical Implications of Artificial Intelligence in Surgery Artificial Intelligence and Health Policy Assessing Strengths and Weaknesses of Artificial Intelligence Research Finally, the appendix includes a detailed glossary of terms and important learning resources and techniques―all of which helps you interpret claims made by studies or companies using AI.
Download or read book Artificial Intelligence in Chemical Engineering written by Thomas E. Quantrille and published by Elsevier. This book was released on 2012-12-02 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) is the part of computer science concerned with designing intelligent computer systems (systems that exhibit characteristics we associate with intelligence in human behavior). This book is the first published textbook of AI in chemical engineering, and provides broad and in-depth coverage of AI programming, AI principles, expert systems, and neural networks in chemical engineering. This book introduces the computational means and methodologies that are used to enable computers to perform intelligent engineering tasks. A key goal is to move beyond the principles of AI into its applications in chemical engineering. After reading this book, a chemical engineer will have a firm grounding in AI, know what chemical engineering applications of AI exist today, and understand the current challenges facing AI in engineering. - Allows the reader to learn AI quickly using inexpensive personal computers - Contains a large number of illustrative examples, simple exercises, and complex practice problems and solutions - Includes a computer diskette for an illustrated case study - Demonstrates an expert system for separation synthesis (EXSEP) - Presents a detailed review of published literature on expert systems and neural networks in chemical engineering
Download or read book Artificial Intelligence in Data Mining written by D. Binu and published by Academic Press. This book was released on 2021-02-17 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in Data Mining: Theories and Applications offers a comprehensive introduction to data mining theories, relevant AI techniques, and their many real-world applications. This book is written by experienced engineers for engineers, biomedical engineers, and researchers in neural networks, as well as computer scientists with an interest in the area. - Provides coverage of the fundamentals of Artificial Intelligence as applied to data mining, including computational intelligence and unsupervised learning methods for data clustering - Presents coverage of key topics such as heuristic methods for data clustering, deep learning methods for data classification, and neural networks - Includes case studies and real-world applications of AI techniques in data mining, for improved outcomes in clinical diagnosis, satellite data extraction, agriculture, security and defense
Download or read book Principles and Methods of Explainable Artificial Intelligence in Healthcare written by Victor Hugo C. De Albuquerque and published by Medical Information Science Reference. This book was released on 2022 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the Explainable Artificial Intelligence (XAI) for healthcare, providing a broad overview of state-of-art approaches for accurate analysis and diagnosis, and encompassing computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, medical imaging data that assist in earlier prediction"--
Download or read book Artificial Intelligence and Deep Learning in Pathology written by Stanley Cohen and published by Elsevier Health Sciences. This book was released on 2020-06-02 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.
Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Download or read book Intelligence Based Medicine written by Anthony C. Chang and published by Academic Press. This book was released on 2020-06-27 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligence-Based Medicine: Data Science, Artificial Intelligence, and Human Cognition in Clinical Medicine and Healthcare provides a multidisciplinary and comprehensive survey of artificial intelligence concepts and methodologies with real life applications in healthcare and medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and the data science domains that is symmetric and balanced. The content consists of basic concepts of artificial intelligence and its real-life applications in a myriad of medical areas as well as medical and surgical subspecialties. It brings section summaries to emphasize key concepts delineated in each section; mini-topics authored by world-renowned experts in the respective key areas for their personal perspective; and a compendium of practical resources, such as glossary, references, best articles, and top companies. The goal of the book is to inspire clinicians to embrace the artificial intelligence methodologies as well as to educate data scientists about the medical ecosystem, in order to create a transformational paradigm for healthcare and medicine by using this emerging new technology. - Covers a wide range of relevant topics from cloud computing, intelligent agents, to deep reinforcement learning and internet of everything - Presents the concepts of artificial intelligence and its applications in an easy-to-understand format accessible to clinicians and data scientists - Discusses how artificial intelligence can be utilized in a myriad of subspecialties and imagined of the future - Delineates the necessary elements for successful implementation of artificial intelligence in medicine and healthcare
Download or read book Machine Learning and Its Applications written by PETER. WLODARCZAK and published by CRC Press. This book was released on 2021-06-30 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R
Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Download or read book Artificial Intelligence in Geography written by Stan Openshaw and published by John Wiley & Sons. This book was released on 1997-07-07 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique work introduces the basic principles of artificial intelligence with applications in geographical teaching and research, GIS, and planning. Written in an accessible, non-technical and witty style, this book marks the beginning of the Al revolution in geography with major implications for teaching and research. The authors provide an easy to understand basic introduction to Al relevant to geography. There are no special mathematical and statistical skills needed, indeed these might well be a hindrance. Al is a different way of looking at the world and it requires a willingness to experiment, and readers who are unhindered by the baggage of obsolete technologies and outmoded philosophies of science will probably do best. The text provides an introduction to expert systems, neural nets, genetic algorithms, smart systems and artificial life and shows how they are likely to transform geographical enquiry. A major methodological milestone in geography The first geographical book on artificial intelligence (Al) No need for previous mathematical or statistical skills/knowledge Accessible style makes a difficult subject available to a wide audience Stan Openshaw is one of the world? s leading researchers into geographical computing, spatial analysis and GIS.
Download or read book Deep Learning in Gaming and Animations written by Moolchand Sharma and published by CRC Press. This book was released on 2024-10-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text discusses the core concepts and principles of deep learning in gaming and animation with applications in a single volume. It will be a useful reference text for graduate students, and professionals in diverse areas such as electrical engineering, electronics and communication engineering, computer science, gaming and animation.