EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Teaching Essay on Residual Stresses and Eigenstrains

Download or read book A Teaching Essay on Residual Stresses and Eigenstrains written by Alexander M. Korsunsky and published by Butterworth-Heinemann. This book was released on 2017-06-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Residual stresses are an important subject in materials science and engineering that has implications across disciplines, from quantum dots to human teeth, from aeroengines to automotive surface finishing. Although a number of monographs exist, no resource is available in the form of a book to serve as a good basis for teaching the fundamentals. A Teaching Essay on Residual Stresses and Eigenstrains introduces eigenstrain methods as a powerful unified approach to residual stress modeling, measurement, and management. Starting with simple residual stress states, the key relationships are elucidated between deformation processes, inelastic strains (eigenstrains) these may introduce, and the resulting residual stress states. This book is written not only for the materials scientist, mechanical engineer, and student seeking to appreciate the origins of residual stress, but also for the more mature researcher and industrial engineer looking to improve their understanding of the eigenstrain approach to describing residual stress. - Provides a unified basis for understanding the fundamentals of residual stress origins and consequences - Introduces a classification of the most important residual stress states and their efficient description, as well as discussing measurement approaches, their limitations, and uses - Approaches the nature and application of eigenstrain methods in a systematic way to describe residual stress fields

Book Functional Thin Films Technology

Download or read book Functional Thin Films Technology written by Sam Zhang and published by CRC Press. This book was released on 2021-08-08 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Thin Films Technology features the functional aspects of thin films, such as their application in solar selective absorbers, fiber lasers, solid oxide fuel cells, piezo-related areas, catalysts, superhydrophobicity, semiconductors, and trace pesticides detection. It highlights developments and advances in the preparation, characterization, and applications of functional micro-/nano-scaled films and coatings. This book Presents technologies aimed at functionality used in nanoelectronics, solar selective absorbers, solid oxide fuel cells, piezo-applications, and sensors Covers absorbers, catalysts, anodic aluminum oxide, superhydrophobics, and semiconductor devices Features a chapter on transport phenomena associated to structures Discusses transport phenomena and material informatics This second volume in the two-volume set, Protective Thin Coatings and Functional Thin Films Technology, will benefit industry professionals and researchers working in areas related to semiconductors, optoelectronics, plasma technology, solid-state energy storages, and 5G, as well as advanced students studying electrical, mechanical, chemical, and materials engineering.

Book Hole Drilling Method for Measuring Residual Stresses

Download or read book Hole Drilling Method for Measuring Residual Stresses written by Gary S. and published by Springer Nature. This book was released on 2022-05-31 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the theory and practice of the Hole-Drilling Method for measuring residual stresses in engineering components. Such measurements are important because residual stresses have a "hidden" character because they exist locked-in within a material, independent of any external load. These stresses are typically created during component manufacture, for example, during welding, casting, or forming. Because of their hidden nature, residual stresses are difficult to measure and consequently are often ignored. However, they directly add to loading stresses and can cause catastrophic failure if not properly included during engineering design. Thus, there is an urgent need to be able to identify and measure residual stresses conveniently and reliably. The Hole-Drilling Method provides an adaptable and well-proven method for measuring residual stresses in a wide range of materials and component types. It is convenient to use and gives reliable results. Because of the hidden nature of residual stresses, the measurement method must necessarily be indirect, thus, additional care and conceptual understanding are necessary to achieve successful results. This book provides a practical introduction to the Hole-Drilling Method, starting from its historical roots and going on to focus on its modern practice. The various chapters describe the nature of residual stresses, the principle of hole-drilling measurements, procedures and guidance on how to make successful measurements, and effective mathematical procedures for stress computation and analysis. The book is intended for practitioners who need to make residual stress measurements either occasionally or routinely, for practicing engineers, for researchers, and for graduate engineering and science students.

Book Nanomechanics for Coatings and Engineering Surfaces

Download or read book Nanomechanics for Coatings and Engineering Surfaces written by Ben Beake and published by Elsevier. This book was released on 2024-11-05 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomechanics for Coatings and Engineering Surfaces: Test Methods, Development Strategies, Modeling Approaches, and Applications provides readers with an array of best practices for nanoindentation measurements as well as related small-scale test methods and how to translate test results into the development of improved coatings. A core theme of the book is explaining to readers exactly how, when, and why the nanomechanical properties of engineered surfaces relate to their wear resistance. The book starts with chapters that introduce the development and importance of nanomechanical testing and linkages between wear resistance and the mechanical properties of coatings before moving into discussions of various experimental methods and techniques, such as nanoindentation, continuous stiffness measurements, nano-scratch methods, high-temperature testing, nano-impact testing, and more. Other sections discuss modeling approaches such as finite element analysis, atomistic and molecular dynamics, and analytical methods. Design strategies and industrial applications are covered next, with a final section looking at trends and future directions. - Provides best practices in nanoindentation measurements and related small-scale test methods - Demonstrates how to use test results to develop improved coatings - Outlines modeling approaches and numerical simulations - Highlights selected applications for metallic nanocomposites, tribological coatings, solid lubricants, and aerospace coatings - Shows future directions for simulation of complex wear scenarios

Book Sixty Shades of Generalized Continua

Download or read book Sixty Shades of Generalized Continua written by Holm Altenbach and published by Springer Nature. This book was released on 2023-02-13 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, well-known scientists discuss modern aspects of generalized continua, in order to better understand modern materials and advanced structures. They possess complicated internal structure, and it requires the development of new approaches to model such structures and new effects caused by it. This book combines fundamental contributions in honor of Victor Eremeyev and his 60th birthday.

Book Proceedings of the First International Conference on Theoretical  Applied and Experimental Mechanics

Download or read book Proceedings of the First International Conference on Theoretical Applied and Experimental Mechanics written by Emmanuel E. Gdoutos and published by Springer. This book was released on 2018-05-26 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICTAEM_1 treated all aspects of theoretical, applied and experimental mechanics including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. During the conference special symposia covering major areas of research activity organized by members of the Scientific Advisory Board took place. ICTAEM_1 brought together the most outstanding world leaders and gave attendees the opportunity to get acquainted with the latest developments in the area of mechanics. ICTAEM_1 is a forum of university, industry and government interaction and serves in the exchange of ideas in an area of utmost scientific and technological importance.

Book Tribology for Energy  Environment and Society

Download or read book Tribology for Energy Environment and Society written by Sujeet Kumar Sinha and published by Springer Nature. This book was released on with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solution of Crack Problems

    Book Details:
  • Author : D.A. Hills
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 9401586489
  • Pages : 314 pages

Download or read book Solution of Crack Problems written by D.A. Hills and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with the numerical solution of crack problems. The techniques to be developed are particularly appropriate when cracks are relatively short, and are growing in the neighbourhood of some stress raising feature, causing a relatively steep stress gradient. It is therefore practicable to represent the geometry in an idealised way, so that a precise solution may be obtained. This contrasts with, say, the finite element method in which the geometry is modelled exactly, but the subsequent solution is approximate, and computationally more taxing. The family of techniques presented in this book, based loosely on the pioneering work of Eshelby in the late 1950's, and developed by Erdogan, Keer, Mura and many others cited in the text, present an attractive alternative. The basic idea is to use the superposition of the stress field present in the unfiawed body, together with an unknown distribution of 'strain nuclei' (in this book, the strain nucleus employed is the dislocation), chosen so that the crack faces become traction-free. The solution used for the stress field for the nucleus is chosen so that other boundary conditions are satisfied. The technique is therefore efficient, and may be used to model the evolution of a developing crack in two or three dimensions. Solution techniques are described in some detail, and the book should be readily accessible to most engineers, whilst preserving the rigour demanded by the researcher who wishes to develop the method itself.

Book Pseudoelasticity of Shape Memory Alloys

Download or read book Pseudoelasticity of Shape Memory Alloys written by Andrzej Ziolkowski and published by Butterworth-Heinemann. This book was released on 2015-03-23 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pseudoelasticity of Shape Memory Alloys: Theory and Experimental Studies is devoted to the phenomenon of pseudoelasticity (superelasticity) exhibited by shape memory alloy materials. It provides extensive introductory content on the state-of-the-art in the field, including SMA materials development, definition of shape memory effects, and discussions on where shape memory behavior is found in various engineering application areas. The book features a survey of modeling approaches targeted at reliable prediction of SMA materials' behavior on different scales of observation, including atomistic, microscopic, mezoscopic, and macroscopic. Researchers and graduate students will find detailed information on the modern methodologies used in the process of building constitutive models of advanced materials exhibiting complex behavior. - Introduces the phenomenon of pseudoelasticity exhibited by shape memory alloy materials - Features a survey of modeling approaches targeted at reliable prediction of SMN materials' behavior on different scales of observation - Provides extensive coverage of the state-of-the-art in the field - Ideal reference for researchers and graduate students interested in the modern methodologies used in the process of building constitutive models of advanced materials

Book Residual Stresses in Composite Materials

Download or read book Residual Stresses in Composite Materials written by Mahmood M. Shokrieh and published by Woodhead Publishing. This book was released on 2014-02-14 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Residual stresses are a common phenomenon in composite materials. They can either add to or significantly reduce material strength. Because of the increasing demand for high-strength, light-weight materials such as composites and their wide range of applications in the aerospace and automotive industries, in civil infrastructure and in sporting applications, it is critical that the residual stresses of composite materials are understood and measured correctly.The first part of this important book reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses. Various mathematical (analytical and numerical) methods for calculation of residual stresses in composite materials are also presented. Chapters in the first section of the book discuss the simulated hole drilling method, the slitting/crack compliance method, measuring residual stresses in homogeneous and composite glass materials using photoelastic techniques, and modeling residual stresses in composite materials. The second part of the book discusses residual stresses in polymer matrix, metal-matrix and a range of other types of composites. Moreover, the addition of nanoparticles to the matrix of polymeric composites as a new technique for reduction of residual stresses is discussed.Residual stresses in composite materials provides a comprehensive overview of this important topic, and is an invaluable reference text for both academics and professionals working in the mechanical engineering, civil engineering, aerospace, automotive, marine and sporting industries. - Reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses - Discusses residual stresses in polymer matrix, metal-matrix and other types of composite - Considers the addition of nanoparticles to the matrix of polymeric composites as a new technique for reduction of residual stresses

Book Dislocation Mechanism Based Crystal Plasticity

Download or read book Dislocation Mechanism Based Crystal Plasticity written by Zhuo Zhuang and published by Academic Press. This book was released on 2019-04-12 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Book Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation

Download or read book Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation written by M.E. Fitzpatrick and published by CRC Press. This book was released on 2003-02-06 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: While residual stress can be a problem in many industries and lead to early failure of component, it can also be introduced deliberately to improve lifetimes. Knowledge of the residual stress state in a component can be critical for quality control of surface engineering processes or vital to performing an accurate assessment of component life unde

Book Laser shock peening Performance and process simulation

Download or read book Laser shock peening Performance and process simulation written by K. Ding and published by CRC Press. This book was released on 2006-01-24 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser shock peening (LSP) is a process for inducing compressive residual stresses using shock waves generated by laser pulses. It is a relatively new surface treatment for metallic materials that can greatly improve their resistance to crack initiation and propagation brought on by cyclic loading and fatigue. This book, the first of its kind, consolidates the scattered knowledge about LSP into one comprehensive volume. It describes the mechanisms of LSP and its substantial role in improving fatigue performance in terms of modification of microstructure, surface morphology, hardness, and strength. In particular, it describes numerical simulation techniques and procedures that can be adopted by engineers and research scientists to design, evaluate, and optimize LSP processes in practical applications.

Book Introduction to the Characterization of Residual Stress by Neutron Diffraction

Download or read book Introduction to the Characterization of Residual Stress by Neutron Diffraction written by M.T. Hutchings and published by CRC Press. This book was released on 2005-02-28 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 25 years the field of neutron diffraction for residual stress characterization has grown tremendously, and has matured from the stage of trial demonstrations to provide a practical tool with widespread applications in materials science and engineering. While the literature on the subject has grown commensurately, it has also remained

Book Key Engineering Materials VI

Download or read book Key Engineering Materials VI written by Alexander M. Korsunsky and published by Trans Tech Publications Ltd. This book was released on 2016-08-15 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected, peer reviewed papers from the 6th International Conference on Key Engineering Materials (ICKEM 2016), March 12-14, 2016, Hong Kong, China

Book Practical Residual Stress Measurement Methods

Download or read book Practical Residual Stress Measurement Methods written by Gary S. Schajer and published by John Wiley & Sons. This book was released on 2013-09-23 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory and intermediate level handbook written in pragmatic style to explain residual stresses and to provide straightforward guidance about practical measurement methods. Residual stresses play major roles in engineering structures, with highly beneficial effects when designed well, and catastrophic effects when ignored. With ever-increasing concern for product performance and reliability, there is an urgent need for a renewed assessment of traditional and modern measurement techniques. Success critically depends on being able to make the most practical and effective choice of measurement method for a given application. Practical Residual Stress Measurement Methods provides the reader with the information needed to understand key residual stress concepts and to make informed technical decisions about optimal choice of measurement technique. Each chapter, written by invited specialists, follows a focused and pragmatic format, with subsections describing the measurement principle, residual stress evaluation, practical measurement procedures, example applications, references and further reading. The chapter authors represent both international academia and industry. Each of them brings to their writing substantial hands-on experience and expertise in their chosen field. Fully illustrated throughout, the book provides a much-needed practical approach to residual stress measurements. The material presented is essential reading for industrial practitioners, academic researchers and interested students. Key features: • Presents an overview of the principal residual stress measurement methods, both destructive and non-destructive, with coverage of new techniques and modern enhancements of established techniques • Includes stand-alone chapters, each with its own figures, tables and list of references, and written by an invited team of international specialists

Book Thermal Stress Analysis of Composite Beams  Plates and Shells

Download or read book Thermal Stress Analysis of Composite Beams Plates and Shells written by Erasmo Carrera and published by Academic Press. This book was released on 2016-11-25 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications presents classic and advanced thermal stress topics in a cutting-edge review of this critical area, tackling subjects that have little coverage in existing resources. It includes discussions of complex problems, such as multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. More challenging topics are then addressed, including anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling, and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others. - Provides an overview of critical thermal stress theory and its relation to beams, plates, and shells, from classical concepts to the latest advanced theories - Appeals to those studying thermoelasticity, thermoelastics, stress analysis, multilayered structures, computational methods, buckling, static response, and dynamic response - Includes the authors' unified formulation (UF) theory, along with cutting-edge topics that receive little coverage in other references - Covers metallic and composite structures, including a complete analysis and sample problems of layered structures, considering both mesh and meshless methods - Presents a valuable resource for those working on thermal stress problems in mechanical, civil, and aerospace engineering settings