EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book The Geometry of Fractal Sets

Download or read book The Geometry of Fractal Sets written by K. J. Falconer and published by Cambridge University Press. This book was released on 1985 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.

Book Lectures on Symplectic Geometry

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Book Lectures on K  hler Manifolds

Download or read book Lectures on K hler Manifolds written by Werner Ballmann and published by European Mathematical Society. This book was released on 2006 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on lectures the author gave at the University of Bonn and the Erwin Schrodinger Institute in Vienna. The aim is to give a thorough introduction to the theory of Kahler manifolds with special emphasis on the differential geometric side of Kahler geometry. The exposition starts with a short discussion of complex manifolds and holomorphic vector bundles and a detailed account of the basic differential geometric properties of Kahler manifolds. The more advanced topics are the cohomology of Kahler manifolds, Calabi conjecture, Gromov's Kahler hyperbolic spaces, and the Kodaira embedding theorem. Some familiarity with global analysis and partial differential equations is assumed, in particular in the part on the Calabi conjecture. There are appendices on Chern-Weil theory, symmetric spaces, and $L^2$-cohomology.

Book Ergodic Theory and Fractal Geometry

Download or read book Ergodic Theory and Fractal Geometry written by Hillel Furstenberg and published by American Mathematical Society. This book was released on 2014-08-08 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.

Book An Introduction to Riemannian Geometry

Download or read book An Introduction to Riemannian Geometry written by Leonor Godinho and published by Springer. This book was released on 2014-07-26 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Book Riemannian Geometry

    Book Details:
  • Author : Peter Petersen
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 1475764340
  • Pages : 443 pages

Download or read book Riemannian Geometry written by Peter Petersen and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialise in Riemannian geometry. Instead of variational techniques, the author uses a unique approach, emphasising distance functions and special co-ordinate systems. He also uses standard calculus with some techniques from differential equations to provide a more elementary route. Many chapters contain material typically found in specialised texts, never before published in a single source. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research - including sections on convergence and compactness of families of manifolds. Thus, this book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.

Book Analysis and Geometry of Markov Diffusion Operators

Download or read book Analysis and Geometry of Markov Diffusion Operators written by Dominique Bakry and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.

Book Geometry

    Book Details:
  • Author : Richard S. Millman
  • Publisher : Springer Science & Business Media
  • Release : 1993-05-07
  • ISBN : 9780387974125
  • Pages : 394 pages

Download or read book Geometry written by Richard S. Millman and published by Springer Science & Business Media. This book was released on 1993-05-07 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry: A Metric Approach with Models, imparts a real feeling for Euclidean and non-Euclidean (in particular, hyperbolic) geometry. Intended as a rigorous first course, the book introduces and develops the various axioms slowly, and then, in a departure from other texts, continually illustrates the major definitions and axioms with two or three models, enabling the reader to picture the idea more clearly. The second edition has been expanded to include a selection of expository exercises. Additionally, the authors have designed software with computational problems to accompany the text. This software may be obtained from George Parker.

Book Nonpositive Curvature  Geometric and Analytic Aspects

Download or read book Nonpositive Curvature Geometric and Analytic Aspects written by Jürgen Jost and published by Birkhäuser. This book was released on 2012-12-06 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book contains the lecture notes from a "Nachdiplomvorlesung", a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts.

Book An Introduction to Symplectic Geometry

Download or read book An Introduction to Symplectic Geometry written by Rolf Berndt and published by American Mathematical Soc.. This book was released on 2001 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.

Book Introduction to Calculus and Analysis II 1

Download or read book Introduction to Calculus and Analysis II 1 written by Richard Courant and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." --Acta Scientiarum Mathematicarum, 1991

Book Handbook of Algebraic Topology

Download or read book Handbook of Algebraic Topology written by I.M. James and published by Elsevier. This book was released on 1995-07-18 with total page 1336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.

Book Mesh Parameterization Methods and Their Applications

Download or read book Mesh Parameterization Methods and Their Applications written by Alla Sheffer and published by Now Publishers Inc. This book was released on 2006 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides guidance to researchers and developers when assessing the suitability of different methods for various applications. The authors focus on the practical aspects of the methods available, such as time complexity and robustness. They also provide multiple examples of parameterizations generated using different methods.

Book The Geometry of Kerr Black Holes

Download or read book The Geometry of Kerr Black Holes written by Barrett O'Neill and published by Courier Corporation. This book was released on 2014-01-15 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduates and graduate students of mathematics as well as for physicists, this unique monograph and self-contained treatment constitutes an introduction to modern techniques in differential geometry. 1995 edition.

Book Global Aspects of Classical Integrable Systems

Download or read book Global Aspects of Classical Integrable Systems written by Richard H. Cushman and published by Birkhäuser. This book was released on 2015-06-01 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.

Book Arbeitstagung Bonn  1984

Download or read book Arbeitstagung Bonn 1984 written by Friedrich Hirzebruch and published by Springer. This book was released on 1985 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: