EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Systematic Evaluation of Compressed Sensing Algorithms Applied to Magnetic Resonance Imaging

Download or read book A Systematic Evaluation of Compressed Sensing Algorithms Applied to Magnetic Resonance Imaging written by Scott William Fassett and published by . This book was released on 2012 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressed sensing is becoming a new paradigm in signal processing by acknowledging that information has a compressible form in some representation. Exploiting the redundant nature of most signals can result in a measurement scheme that intentionally undersamples and is able to extrapolate the remaining important information. Because of long scan times in magnetic resonance imaging, the application of a compressed sensing construct is appealing. The magnetic resonance domain is unique in the compressed sensing framework due to its specialized acquisition system in the k-space. To speed up the acquisition process while obtaining sufficient data to accurately reconstruct the images, multi-channel acquisition under various undersampling schemes and parallel processing to extrapolate data for reconstruction have currently been deployed. This research explores the practicality of using some established CS algorithms to reconstruct images from undersampled multi-channel data. The focus of the evaluation is to see which algorithms, if any, can reconstruct clinically usable images at clinically acceptable speeds

Book Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms

Download or read book Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms written by Bhabesh Deka and published by Springer. This book was released on 2018-12-29 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need for the CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications.

Book Compressed Sensing for Magnetic Resonance Image Reconstruction

Download or read book Compressed Sensing for Magnetic Resonance Image Reconstruction written by Angshul Majumdar and published by Cambridge University Press. This book was released on 2015-02-26 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Discusses different ways to use existing mathematical techniques to solve compressed sensing problems"--Provided by publisher.

Book Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms

Download or read book Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms written by Sumit Datta and published by . This book was released on 2019 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need for the CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications.

Book Novel Compressed Sensing Algorithms with Applications to Magnetic Resonance Imaging

Download or read book Novel Compressed Sensing Algorithms with Applications to Magnetic Resonance Imaging written by Yue Hu and published by . This book was released on 2014 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Magnetic Resonance Imaging (MRI) is a widely used non-invasive clinical imaging modality. Unlike other medical imaging tools, such as X-rays or computed tomography (CT), the advantage of MRI is that it uses non-ionizing radiation. In addition, MRI can provide images with multiple contrast by using different pulse sequences and protocols. However, acquisition speed, which remains the main challenge for MRI, limits its clinical application. Clinicians have to compromise between spatial resolution, SNR, and scan time, which leads to sub-optimal performance. The acquisition speed of MRI can be improved by collecting fewer data samples. However, according to the Nyquist sampling theory, undersampling in k-space will lead to aliasing artifacts in the recovered image. The recent mathematical theory of compressed sensing has been developed to exploit the property of sparsity for signals/images. It states that if an image is sparse, it can be accurately reconstructed using a subset of the k-space data under certain conditions. Generally, the reconstruction is formulated as an optimization problem. The sparsity of the image is enforced by using a sparsifying transform. Total variation (TV) is one of the commonly used methods, which enforces the sparsity of the image gradients and provides good image quality. However, TV introduces patchy or painting-like artifacts in the reconstructed images. We introduce novel regularization penalties involving higher degree image derivatives to overcome the practical problems associated with the classical TV scheme. Motivated by novel reinterpretations of the classical TV regularizer, we derive two families of functionals, which we term as isotropic and anisotropic higher degree total variation (HDTV) penalties, respectively. The numerical comparisons of the proposed scheme with classical TV penalty, current second order methods, and wavelet algorithms demonstrate the performance improvement. Specifically, the proposed algorithms minimize the staircase and ringing artifacts that are common with TV schemes and wavelet algorithms, while better preserving the singularities. Higher dimensional MRI is also challenging due to the above mentioned trade-offs. We propose a three-dimensional (3D) version of HDTV (3D-HDTV) to recover 3D datasets. One of the challenges associated with the HDTV framework is the high computational complexity of the algorithm. We introduce a novel computationally efficient algorithm for HDTV regularized image recovery problems. We find that this new algorithm improves the convergence rate by a factor of ten compared to the previously used method. We demonstrate the utility of 3D-HDTV regularization in the context of compressed sensing, denoising, and deblurring of 3D MR dataset and fluorescence microscope images. We show that 3D-HDTV outperforms 3D-TV schemes in terms of the signal to noise ratio (SNR) of the reconstructed images and its ability to preserve ridge-like details in the 3D datasets. To address speed limitations in dynamic MR imaging, which is an important scheme in multi-dimensional MRI, we combine the properties of low rank and sparsity of the dataset to introduce a novel algorithm to recover dynamic MR datasets from undersampled k-t space data. We pose the reconstruction as an optimization problem, where we minimize a linear combination of data consistency error, non-convex spectral penalty, and non-convex sparsity penalty. The problem is solved using an iterative, three step, alternating minimization scheme. Our results on brain perfusion data show a signicant improvement in SNR and image quality compared to classical dynamic imaging algorithms"--Page vii-ix.

Book Compressed Sensing for Distributed Systems

Download or read book Compressed Sensing for Distributed Systems written by Giulio Coluccia and published by Springer. This book was released on 2015-05-29 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to the theoretical bounds. It presents and discusses various distributed reconstruction algorithms, summarizing the theoretical reconstruction guarantees and providing a comparative analysis of their performance and complexity. In summary, this book will allow the reader to get started in the field of distributed compressed sensing from theory to practice. We believe that this book can find a broad audience among researchers, scientists, or engineers with very diverse backgrounds, having interests in mathematical optimization, network systems, graph theoretical methods, linear systems, stochastic systems, and randomized algorithms. To help the reader become familiar with the theory and algorithms presented, accompanying software is made available on the authors’ web site, implementing several of the algorithms described in the book. The only background required of the reader is a good knowledge of advanced calculus and linear algebra.

Book Handbook of Mathematical Methods in Imaging

Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Book Proceedings of Third International Conference on Intelligent Computing  Information and Control Systems

Download or read book Proceedings of Third International Conference on Intelligent Computing Information and Control Systems written by A. Pasumpon Pandian and published by Springer Nature. This book was released on 2022-03-14 with total page 1051 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of papers presented at the International Conference on Intelligent Computing, Information and Control Systems (ICICCS 2021). It encompasses various research works that help to develop and advance the next-generation intelligent computing and control systems. The book integrates the computational intelligence and intelligent control systems to provide a powerful methodology for a wide range of data analytics issues in industries and societal applications. The book also presents the new algorithms and methodologies for promoting advances in common intelligent computing and control methodologies including evolutionary computation, artificial life, virtual infrastructures, fuzzy logic, artificial immune systems, neural networks and various neuro-hybrid methodologies. This book is pragmatic for researchers, academicians and students dealing with mathematically intransigent problems.

Book Smart Algorithms for Multimedia and Imaging

Download or read book Smart Algorithms for Multimedia and Imaging written by Michael N. Rychagov and published by Springer Nature. This book was released on 2021-05-05 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents prospective, industrially proven methods and software solutions for storing, processing, and viewing multimedia content on digital cameras, camcorders, TV, and mobile devices. Most of the algorithms described here are implemented as systems on chip firmware or as software products and have low computational complexity and memory consumption. In the four parts of the book, which contains a total of 16 chapters, the authors address solutions for the conversion of images and videos by super-resolution, depth estimation and control and mono-to-stereo (2D to 3D) conversion; display applications by video editing; the real-time detection of sport episodes; and the generation and reproduction of natural effects. The practical principles of machine learning are illustrated using technologies such as image classification as a service, mobile user profiling, and automatic view planning with dictionary-based compressed sensing in magnetic resonance imaging. The implementation of these technologies in mobile devices is discussed in relation to algorithms using a depth camera based on a colour-coded aperture, the animated graphical abstract of an image, a motion photo, and approaches and methods for iris recognition on mobile platforms. The book reflects the authors’ practical experience in the development of algorithms for industrial R&D and the commercialization of technologies. Explains digital techniques for digital cameras, camcorders, TV, mobile devices; Offers essential algorithms for the processing pipeline in multimedia devices and accompanying software tools; Features advanced topics on data processing, addressing current technology challenges.

Book Optimization Algorithms in Compressive Sensing  CS  Sparse Magnetic Resonance Imaging  MRI

Download or read book Optimization Algorithms in Compressive Sensing CS Sparse Magnetic Resonance Imaging MRI written by Viliyana Takeva-Velkova and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Compressed Sensing in Information Processing

Download or read book Compressed Sensing in Information Processing written by Gitta Kutyniok and published by Springer Nature. This book was released on 2022-10-20 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume showcases the most significant results obtained from the DFG Priority Program on Compressed Sensing in Information Processing. Topics considered revolve around timely aspects of compressed sensing with a special focus on applications, including compressed sensing-like approaches to deep learning; bilinear compressed sensing - efficiency, structure, and robustness; structured compressive sensing via neural network learning; compressed sensing for massive MIMO; and security of future communication and compressive sensing.

Book Compressed Sensing for MRI

Download or read book Compressed Sensing for MRI written by Mariya Doneva and published by Sudwestdeutscher Verlag Fur Hochschulschriften AG. This book was released on 2011 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work explores and extends the concept of applying compressed sensing to MRI. Asuccessful CS reconstruction requires incoherent measurements,signal sparsity, and a nonlinearsparsity promoting reconstruction. To optimize the performance of CS, the acquisition, thesparsifying transform and the reconstruction have to be adapted to the application of interest.This work presents new approaches for sampling, signal sparsity and reconstruction, which areapplied to three important applications: dynamic MR imaging, MR parameter mapping andchemical-shift based water-fat separation.The methods presented in this work allow to more fully exploit the potential of compressedsensing to improve imaging speed. Future development of these methods, and combination withexisting techniques for fast imaging, holds the potential to improve the diagnostic quality ofexisting clinical MR imaging techniques and to open up opportunities for entirely new clinicalapplications of MRI.

Book A Mathematical Introduction to Compressive Sensing

Download or read book A Mathematical Introduction to Compressive Sensing written by Simon Foucart and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Book Signal Processing for Magnetic Resonance Imaging and Spectroscopy

Download or read book Signal Processing for Magnetic Resonance Imaging and Spectroscopy written by Hong Yan and published by CRC Press. This book was released on 2002-02-20 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference/text contains the latest signal processing techniques in magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) for more efficient clinical diagnoses-providing ready-to-use algorithms for image segmentation and analysis, reconstruction and visualization, and removal of distortions and artifacts for increased detec

Book Performance Analysis Between Two Sparsity Constrained Mri Methods

Download or read book Performance Analysis Between Two Sparsity Constrained Mri Methods written by Nibal Arzouni and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most important challenges in dynamic magnetic resonance imaging (MRI) is to achieve high spatial and temporal resolution when it is limited by system performance. It is desirable to acquire data fast enough to capture the dynamics in the image time series without losing high spatial resolution and signal to noise ratio. Many techniques have been introduced in the recent decades to achieve this goal. Newly developed algorithms like Highly Constrained Backprojection (HYPR) and Compressed Sensing (CS) reconstruct images from highly undersampled data using constraints. Using these algorithms, it is possible to achieve high temporal resolution in the dynamic image time series with high spatial resolution and signal to noise ratio (SNR). In this thesis we have analyzed the performance of HYPR to CS algorithm. In assessing the reconstructed image quality, we considered computation time, spatial resolution, noise amplification factors, and artifact power (AP) using the same number of views in both algorithms, and that number is below the Nyquist requirement. In the simulations performed, CS always provides higher spatial resolution than HYPR, but it is limited by computation time in image reconstruction and SNR when compared to HYPR. HYPR performs better than CS in terms of SNR and computation time when the images are sparse enough. However, HYPR suffers from streaking artifacts when it comes to less sparse image data.

Book Nature Inspired Metaheuristic Algorithms for Engineering Optimization Applications

Download or read book Nature Inspired Metaheuristic Algorithms for Engineering Optimization Applications written by Serdar Carbas and published by Springer Nature. This book was released on 2021-03-31 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book engages in an ongoing topic, such as the implementation of nature-inspired metaheuristic algorithms, with a main concentration on optimization problems in different fields of engineering optimization applications. The chapters of the book provide concise overviews of various nature-inspired metaheuristic algorithms, defining their profits in obtaining the optimal solutions of tiresome engineering design problems that cannot be efficiently resolved via conventional mathematical-based techniques. Thus, the chapters report on advanced studies on the applications of not only the traditional, but also the contemporary certain nature-inspired metaheuristic algorithms to specific engineering optimization problems with single and multi-objectives. Harmony search, artificial bee colony, teaching learning-based optimization, electrostatic discharge, grasshopper, backtracking search, and interactive search are just some of the methods exhibited and consulted step by step in application contexts. The book is a perfect guide for graduate students, researchers, academicians, and professionals willing to use metaheuristic algorithms in engineering optimization applications.