EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A study on the thermal behaviour and capacity recovery of lithium ion batteries and their thermal management using heat pipes

Download or read book A study on the thermal behaviour and capacity recovery of lithium ion batteries and their thermal management using heat pipes written by Ye Yonghuang and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Investigation Into the Effect of Thermal Management on the Capacity Fade of Lithium ion Batteries

Download or read book Investigation Into the Effect of Thermal Management on the Capacity Fade of Lithium ion Batteries written by Andrew Carnovale and published by . This book was released on 2016 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: The popularity of electric (and hybrid) vehicles has raised the importance of effective thermal management for lithium-ion batteries, both to prevent thermal runaway leading to a fire hazard, and to minimize capacity fade for longer lifetime. In this research, the focus was on the effect of thermal management on the capacity fade of lithium-ion batteries. A battery thermal management system will impact the battery operation through its temperature, thermal gradient and history, as well as the cell-to-cell temperature variations in a battery module. This study employed AutoLionST, a software for the analysis of lithium-ion batteries, to better understand capacity fade of lithium-ion batteries, complemented by the experimental investigation. Experimental capacity fade data for a lithium-ion battery cycled under isothermal, 1C charge/discharge conditions was measured first, which was used to validate the numerical model. Then the software's ability to model degradation at moderate to lower temperatures of around 20°C was investigated with simulation of battery capacity under isothermal conditions for a variety of operating temperatures. The next phase of the study modeled battery capacity fade under a variety of different operating conditions. In the first set of simulations, three different base temperatures, constant discharge rates, and heat transfer coefficients were considered. In the second set of simulations, a fixed-time drive cycle was used as the load case to model a typical day's worth of driving, while varying the base temperature, charge voltage, and heat transfer coefficient. These simulations were repeated considering regenerative braking. It was found that temperature has the largest direct impact on the capacity fade which is expected based on prior sutdies. Further, it was found that thermal management does have a significant impact on capacity fade, as effective thermal management is capable of preventing significant battery temperature rise. As concluded from the constant discharge rate simulations, effective thermal management is most crucial at high discharge rates, which will result in high heat generation. It was also concluded from both constant discharge rate and drive cycle simulations, that thermal management is much more effective at preventing capacity fade at battery temperatures close to 20°C. In the drive cycle simulations, using the same discharge profile, there is a much more significant spread in battery capacity between high and low heat transfer coefficients for a lower base temperature (20°C) compared to higher base temperatures (35°C and 50°C). As well, it was shown that using a lower charge voltage will result in slightly less capacity fade over cycling. Additionally, using regenerative braking makes it more realistic to use lower charge voltages, since the battery pack can be recharged during operation, thereby increasing driving range, while preventing increased capacity fade. The final phase showed that effective thermal management would be even more imperative for more intense and realistic driving styles. It was shown that different driving styles can result in significant rises in heat generation and hence battery temperature. From previous conclusions this implies that much intense driving (high acceleration) can result in a higher need for effective thermal management.

Book Thermal Management for Batteries

Download or read book Thermal Management for Batteries written by Hafiz Muhammad Ali and published by Elsevier. This book was released on 2024-03-15 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Management of Batteries presents a comprehensive examination of the various conventional and emerging technologies used for thermal management of batteries and electronics. With an emphasis on advanced nanofluids, the book provides step-by-step guidance on advanced techniques at the component and system level for both active and passive technologyStarting with an overview of the fundamentals, each chapter quickly builds into a comprehensive treatment of up-to-date technologies. The first part of the book discusses advanced battery technologies, while the second part addresses the design and performance optimization of battery thermal management systems. Power density and fast charging mechanisms of batteries are considered, as are role of thermal management systems on performance enhancement. The book discusses the design selection of various thermal management systems, parameters selection for different configurations, the operating conditions for different battery types, the setups used for experimentation and instrumentation, and the operation of thermal management systems. Advanced techniques such as heat pipes, phase change materials, nanofluids, novel heat sinks, and two phase flow loops are examined in detail.Presenting the fundamentals through to the latest developments alongside step-by-step guidance, mathematical models, schematic diagrams, and experimental data, Thermal Management of Batteries is an invaluable and comprehensive reference for graduates, researchers, and practicing engineers working in the field of battery thermal management, and offers valuable solutions to key thermal management problems that will be of interest to anyone working on energy and thermal heat systems. - Critically examines the components of batteries systems and their thermal energy generation - Analyzes system scale integration of battery components with optimization and better design impact - Explores the modeling aspects and applications of nanofluid technology and PCMs, as well as the utilization of machine learning techniques - Provides step-by-step guidance on techniques in each chapter that are supported by mathematical models, schematic diagrams, and experimental data

Book Modeling and Simulation of Lithium ion Power Battery Thermal Management

Download or read book Modeling and Simulation of Lithium ion Power Battery Thermal Management written by Junqiu Li and published by Springer Nature. This book was released on 2022-05-09 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the thermal management technology of lithium-ion batteries for vehicles. It introduces the charging and discharging temperature characteristics of lithium-ion batteries for vehicles, the method for modeling heat generation of lithium-ion batteries, experimental research and simulation on air-cooled and liquid-cooled heat dissipation of lithium-ion batteries, lithium-ion battery heating method based on PTC and wide-line metal film, self-heating using sinusoidal alternating current. This book is mainly for practitioners in the new energy vehicle industry, and it is suitable for reading and reference by researchers and engineering technicians in related fields such as new energy vehicles, thermal management and batteries. It can also be used as a reference book for undergraduates and graduate students in energy and power, electric vehicles, batteries and other related majors.

Book Analysing and Evaluating a Thermal Management Solution Via Heat Pipes for Lithium ion Batteries in Electric Vehicles

Download or read book Analysing and Evaluating a Thermal Management Solution Via Heat Pipes for Lithium ion Batteries in Electric Vehicles written by Qian Wang and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A multifactorial analysis of thermal management concepts for high voltage battery systems

Download or read book A multifactorial analysis of thermal management concepts for high voltage battery systems written by Joshua Smith and published by Cuvillier Verlag. This book was released on 2023-06-23 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research presents a method for efficiently and reproducibly comparing diverse battery thermal management concepts in an early stage of development to assist in battery system design. The basis of this method is a hardware-based thermal simulation model of a prismatic Lithium-Ion battery, called the Smart Battery Cell (SBC). By eliminating the active chemistry, enhanced reproducibility of the experimental boundary conditions and increased efficiency of the experimental trials are realized. Additionally, safety risks associated with Lithium-Ion cells are eliminated, making the use of the SBC possible with thermal management systems in an early state of developed and without costly safety infrastructure. The integration of thermocouples leaves the thermal contact surface undisturbed, allowing the SBC to be integrated into diverse thermal management systems.

Book Modeling and Experimental Study of Lithium ion Battery Thermal Behavior

Download or read book Modeling and Experimental Study of Lithium ion Battery Thermal Behavior written by Carlos Felipe Lopez and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: While the popularity of lithium-ion batteries (LIBs) has increased significantly in recent years, safety concerns due to the high thermal instability of LIBs limit their use in applications with zero tolerance for failure. A safety issue of particular interest is a scenario called thermal runaway in which several exothermic side-reactions occur at elevated temperature ranges and release heat, which can then trigger the next reaction. This matter worsens when multiple cells are installed in close proximity to each other as the released heat from an abused cell can activate the chain of reactions in a neighboring cell, causing an entire module to heat rapidly and vent or ignite. This body of work aims to study LIB thermal behavior using both modeling and experiments to determine design practices that improve the safety of LIB modules. Based on the results of single cell abuse testing, a numerical model of the side-reactions that occur during thermal runaway was developed. The results showed that cell form factor and ambient conditions influence abuse behavior significantly. These abuse tests were extended to multi-cell modules to determine the effect of cell spacing, electrical configuration, and protection materials on the propagation of thermal runaway from an abused cell to a surrounding one. Lastly, an electrochemically coupled thermal model of battery thermal management systems of various configurations was created. An optimum thermal management design was found that utilized both active and passive methods of cooling to keep cell temperatures and thermal gradients within safe limits. The work described herein is expected to provide insight into safe battery design practices. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155326

Book Development and Evaluation of Active Thermal Management System for Lithium ion Batteries Using Solid state Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications

Download or read book Development and Evaluation of Active Thermal Management System for Lithium ion Batteries Using Solid state Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications written by Bhaumik Kamlesh Parekh and published by . This book was released on 2015 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Heat pipe Based Thermal Management Designs for Lithium ion Batteries

Download or read book Heat pipe Based Thermal Management Designs for Lithium ion Batteries written by Shurong Lei and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis of Heat spreading Thermal Management Solutions for Lithium ion Batteries

Download or read book Analysis of Heat spreading Thermal Management Solutions for Lithium ion Batteries written by Hussam Jihad Khasawneh and published by . This book was released on 2011 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Electrical storage technologies (i.e., batteries) play a ubiquitous role in all facets of modern technologies for applications ranging from very small to very large scale, both stationary and mobile. In the past decade, Li-ion batteries are quickly emerging as the preferred electrical energy storage technology due to the intrinsic power and energy storage density compared to older battery chemistries. All electrochemical batteries are strongly linked to their thermal state: on one hand, their electrical characteristics are strongly dependent on temperature and, on the other hand, their thermal state is a result of both their environmental temperature, but also their electrical usage due to internal heat generation. Furthermore, their life (and potentially safety) is also strongly affected by their thermal state. Li-ion batteries, due to their high electrical power capability and density tend to be used aggressively in many applications, rendering the thermal issues more acute. Finally, Li-ion battery packs (like all packs) are made of many cells interconnected in various series/parallel arrangements in tightly confined spaces. Hence, thermal management solutions need to be implemented for two primary reasons: rejecting the heat generated inside the pack to the environment to avoid high (or unsafe) temperatures leading to premature (or catastrophic) failure and providing a good thermal uniformity among all the cells so that their electrical performance (and aging) in well matched in a pack. This thesis focuses on the thermal modeling of Li-ion packs and the development of passive thermal management solutions for such packs. The thesis first provides an extensive review of the current literature on Li-ion batteries electrical and thermal modeling and current approaches for thermal management solutions of Li-ion packs. This study then focuses on a particular current application using a small Li-ion pack, namely a contractor-grade 36v cordless drill. This particular application was chosen as it encapsulates many of the features of larger automotive packs and represent and leads to an aggressive usage pattern where battery life is always an issue. This pack was experimentally studied to establish typical usage patterns and to measure the thermal and electrical state of the stock pack during such usage. The study then developed and validated a FEM computational pack model in the stock configuration. This experimentally validated models was then used as a proxy to reality to numerically investigate multiple possible configurations of passive thermal management solutions using a high thermal conductivity, Graphite-based heat spreading material to both reduce temperature non-uniformities within the pack and decrease of overall pack temperature (better heat rejection) during aggressive use. Finally, a preliminary experimental validation of one of the promising configurations of heat spreaders was investigated. The work described in this thesis clearly demonstrates that passive heat spreading technology can be very beneficial to reduce thermal stress on batteries and lead to more thermally homogenous packs. Furthermore, this study demonstrated that the investigation of such solutions can be performed with validated thermal FEM models to speed up the development of actual solution and reduce experimental prototype building. Future work will include more configurations, but also experimental investigation of battery life for both thermally managed and unmanaged packs under similar (aggressive) usage patterns. Finally, the conclusions from this study conducted on a cordless power tool are probably equally applicable to large automotive battery packs where life and costs are critical.

Book Electric Vehicle Battery Systems

Download or read book Electric Vehicle Battery Systems written by Sandeep Dhameja and published by Elsevier. This book was released on 2001-10-30 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications.Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems.* Addresses cost and efficiency as key elements in the design process* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies

Book A Computational Study on the Internal Short Circuit and Thermal Runaway Behavior of Li ion Batteries

Download or read book A Computational Study on the Internal Short Circuit and Thermal Runaway Behavior of Li ion Batteries written by and published by . This book was released on 2018 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium-ion (Li-ion) battery is featured by relatively high energy density and long cycle life, and hence has been widely adopted in the electric vehicle industry. However, many factors including potential overcharge, overheat, collision and internal short circuit, could substantially reduce the performance life time of a Li-ion battery, even lead to severe fire and explosions. Since the performance, life expectancy and safety of the battery directly affect the performance of electric vehicles, an in-depth understanding of battery thermal runaway induced by internal short circuit has essential theorectical significance and practical value for enhanced safety for the battery and the entire vehicle. For the development of Li-ion battery, experimental tests are needed to verify the battery material and structural design and directly reflect the advantages and disadvantages of the materials and structural design. However, these experiments are subject to high cost, long test cycle, and loss of generality due to the case-by-case structure and defect of a battery. Therefore, modeling has become a valuable tool for studying Li-ion batteries. Li-ion batteries and issues related to their thermal management and safety have been attracting extensive research interests. In this work, a three-dimensional (3D) thermal abuse model for Li-ion battery thermal runaway and a two-dimensional (2D) electrochemical-thermal model for Li-ion battery internal short circuit are applied to study the performance and safety issues of a Li-ion battery. Firstly, for the 3D thermal abuse model, based on a recent thermal chemistry model, the phenomena of thermal runaway induced by a transient internal heat source are computationally investigated using a 3D model built in COMSOL Multiphysics 5.3. Incorporating the anisotropic heat conductivity and typical thermal chemical parameters available from the literature, temperature evolution subject to both heat transfer from an internal source and the activated internal chemical reactions is simulated in detail. This model focuses on the critical runaway behavior with a delay time around 10s. Emphasis has been placed on the critical ignition energy needed to trigger thermal runaway, and the chemical kinetic feature exhibited during the runaway process. Secondly, to further study the transient internal heat source during internal short circuit, eventually triggering thermal runaway, the 2D electrochemical-thermal model for a cell unit is built to analyze the power dissipation from the internal short circuit. In this 2D model, the internal short circuit is induced by metal penetration, which directly connects the positive electrode and the negative electrode across the separator. Key features on the current density, electrical field development, power dissipation and heat release rate have been identified based on fundamentals of electrochemistry. For the future work, it is suggested that these two parts could be connected for a unified model combining thermal abuse and electrochemistry, to fundamentally predict the complex physical-chemical process of thermal runaway induced by the internal short circuit.

Book Thermal Management of Electric Vehicle Battery Systems

Download or read book Thermal Management of Electric Vehicle Battery Systems written by Ibrahim Din¿er and published by John Wiley & Sons. This book was released on 2017-03-20 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Management of Electric Vehicle Battery Systems provides a thorough examination of various conventional and cutting edge electric vehicle (EV) battery thermal management systems (including phase change material) that are currently used in the industry as well as being proposed for future EV batteries. It covers how to select the right thermal management design, configuration and parameters for the users’ battery chemistry, applications and operating conditions, and provides guidance on the setup, instrumentation and operation of their thermal management systems (TMS) in the most efficient and effective manner. This book provides the reader with the necessary information to develop a capable battery TMS that can keep the cells operating within the ideal operating temperature ranges and uniformities, while minimizing the associated energy consumption, cost and environmental impact. The procedures used are explained step-by-step, and generic and widely used parameters are utilized as much as possible to enable the reader to incorporate the conducted analyses to the systems they are working on. Also included are comprehensive thermodynamic modelling and analyses of TMSs as well as databanks of component costs and environmental impacts, which can be useful for providing new ideas on improving vehicle designs. Key features: Discusses traditional and cutting edge technologies as well as research directions Covers thermal management systems and their selection for different vehicles and applications Includes case studies and practical examples from the industry Covers thermodynamic analyses and assessment methods, including those based on energy and exergy, as well as exergoeconomic, exergoenvironmental and enviroeconomic techniques Accompanied by a website hosting codes, models, and economic and environmental databases as well as various related information Thermal Management of Electric Vehicle Battery Systems is a unique book on electric vehicle thermal management systems for researchers and practitioners in industry, and is also a suitable textbook for senior-level undergraduate and graduate courses.

Book Advances in Battery Technologies for Electric Vehicles

Download or read book Advances in Battery Technologies for Electric Vehicles written by Bruno Scrosati and published by Woodhead Publishing. This book was released on 2015-05-25 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. - Provides an in-depth look into new research on the development of more efficient, long distance travel batteries - Contains an introductory section on the market for battery and hybrid electric vehicles - Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries

Book Nanomaterials for Solid State Hydrogen Storage

Download or read book Nanomaterials for Solid State Hydrogen Storage written by Robert A. Varin and published by Springer Science & Business Media. This book was released on 2009-01-13 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, important advances have been made in the development of nanostructured materials for solid state hydrogen storage used to supply hydrogen to fuel cells in a clean, inexpensive, safe and efficient manner. Nanomaterials for Solid State Hydrogen Storage focuses on hydrogen storage materials having high volumetric and gravimetric hydrogen capacities, and thus having the highest potential of being applied in the automotive sector. Written by leading experts in the field, Nanomaterials for Solid State Hydrogen Storage provides a thorough history of hydrides and nanomaterials, followed by a discussion of existing fabrication methods. The authors’ own research results in the behavior of various hydrogen storage materials are also presented. Covering fundamentals, extensive research results and recent advances in nanomaterials for solid state hydrogen storage, this book serves as a comprehensive reference.

Book Thermal Characteristics of Air Flow Cooling in the Lithium Ion Batteries Experimental Chamber

Download or read book Thermal Characteristics of Air Flow Cooling in the Lithium Ion Batteries Experimental Chamber written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.