EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Metal Oxide Based Thin Film Structures

Download or read book Metal Oxide Based Thin Film Structures written by Nini Pryds and published by Elsevier. This book was released on 2017-09-07 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. - Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field - Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation - Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike

Book High Performance Metal Oxide Thin Film Transistors Via Cluster Control and Interface Engineering

Download or read book High Performance Metal Oxide Thin Film Transistors Via Cluster Control and Interface Engineering written by Zhengxu Wang and published by . This book was released on 2020 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Around 100 years has passed since the first cathode ray tube has been fabricated. Fast and free transition of graphs provided much convenience for human communication. Generations of display were developed and flat panel display (FPD) techniques are developing tremendously recently. Various demands are raised including high definition, large area, flexibility, etc. Backplane need improving to meet these, especially the thin film transistor (TFT) units. High mobility, easy process and good interfaces are desired. Solution processed amorphous InGaZnO proves a competitive candidate for TFT semiconductor materials. Its electronic performance, uniformity and switching properties turned out among the best. However, problems remain to be solved including mechanism interpretation, precursor control, morphology and interface. Chapter 1 will introduce the history and state of art of TFT in more details. In the following parts of this dissertation, I'll discuss the electronic behavior, morphology and interface of IGZO TFT. In Chapter 2, we performed gated four-probe measurements to extract the intrinsic mobility and contact resistance as functions of gate voltage and temperature. Contact resistance was proved to play a major role in mobility degradation at high gate bias, whereas, band-like transport dominates. We proposed UV-O3 which modified the contact regions and mobility was boosted from 23 to 30 cm2/Vs. In Chapter 3, clusters in precursor solution, which has critical effects on morphology, are discussed. Cluster size distribution was narrowed and size was brought down by acac. Small roughness of metal oxide was achieved and saturated mobility increased from 4.0 to 5.5 cm2/Vs. In a positive bias stress test, turn on voltage shift decreased from 1.6 to 0.3 V/10000s. Cluster size control is a promising way to tune the morphology of solution processed metal oxide film. Small sized high definition display is placing more challenge on backplane TFTs. IGZO is one of the candidates but the unsatisfactory performance of small sized IGZO TFTs is limiting their applicability. Hence, a novel weak acid modification (WAM) strategy was introduced to generate more oxygen vacancies for higher mobility, and to lower the surface roughness. Electrode-IGZO contact was enhanced. Contact resistance was reduced from 9.1 k mm to 2.3 k mm, as measured by the gated four probe (GFP) method. Field effect mobility for small sized devices was boosted from 1.5 cm2/Vs to 4.0 cm2/Vs. Additionally, a 12 12 transistor and organic light emission diode array built from the modified IGZO TFT devices has been demonstrated.

Book Semiconducting Metal Oxide Thin film Transistors

Download or read book Semiconducting Metal Oxide Thin film Transistors written by Ye Zhou (Semiconductor engineer) and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconducting metal oxide thin-film transistors (TFTs) are promising candidates for functional electronic devices. This reference text covers the latest developments in the field, including the design, materials characteristics, device operation principles, specialised device applications and mechanisms, including the latest semiconducting TFT technologies. The book introduces the concepts and working mechanisms of semiconducting metal oxide TFTs, with a focus on metal oxide thin films that have desirable electrical and optical properties. The relationship between material properties and device performance is analysed, and materials and device challenges, as well as possible strategies, are discussed.

Book Semiconducting Metal Oxide Thin Film Transistors

Download or read book Semiconducting Metal Oxide Thin Film Transistors written by ZHOU and published by Myprint. This book was released on 2020-12-29 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding the Enhanced Mobility of Solution Processed Metal Oxide Thin Film Transistors Having High k Gate Dielectrics

Download or read book Understanding the Enhanced Mobility of Solution Processed Metal Oxide Thin Film Transistors Having High k Gate Dielectrics written by Andre Zeumault and published by . This book was released on 2005 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primarily used as transparent electrodes in solar-cells, more recently, physical vapor deposited (PVD) transparent conductive oxide (TCO) materials (e.g. ZnO, In2O3 and SnO2) also serve as the active layer in thin-film transistor (TFT) technology for modern liquidcrystal displays. Relative to a-Si:H and organic TFTs, commercial TCO TFTs have reduced off-state leakage and higher on-state currents. Additionally, since they are transparent, they have the added potential to enable fully transparent TFTs which can potentially improve the power efficiency of existing displays. In addition to PVD, solution-processing is an alternative route to the production of displays and other large-area electronics. The primary advantage of solution-processing is in the ability to deposit materials at reduced-temperatures on lower-cost substrates (e.g. glass, plastics, paper, metal foils) at high speeds and over large areas. The versatility offered by solution-processing is unlike any conventional deposition process making it a highly attractive emergent technology. Unfortunately, the benefits of solution-processing are often overshadowed by a dramatic reduction in material quality relative to films produced by conventional PVD methods. Consequently, there is a need to develop methods that improve the electronic performance of solution-processed materials. Ideally, this goal can be met while maintaining relatively low processing temperatures so as to ensure compatibility with low-cost roll-compatible substrates. Mobility is a commonly used metric for assessing the electronic performance of semiconductors in terms of charge transport. It is commonly observed that TCO materials exhibit significantly higher field-effect mobility when used in conjunction with high-k gate dielectrics (10 to 100 cm2 V−1 s −1 ) as opposed to conventional thermally-grown SiO2 (0.1 to 20 cm2 V−1 s −1 ). Despite the large amount of empirical data documenting this bizarre effect, its physical ori- 2 gin is poorly understood. In this work, the interaction between semiconductor TCO films and high-k dielectrics is studied with the goal of developing a theory explaining the observed mobility enhancement. Electrical investigation suggests that the mobility enhancement is due to an effective doping of the TCO by the high-k dielectric, facilitated by donor-like defect states inadvertently introduced into the dielectric during processing. The effect these states have on electron transport in the TCO is assessed based on experimental data and electrostatic simulations and is found to correlate with negative aspects of TFT behavior (e.g. frequency dispersion, gate leakage, hysteresis, and poor bias stability). Based on these findings, we demonstrate the use of an improved device structure, analogous to the concept of modulation doping, which uses the high-k dielectric film as an encapsulate, rather than a gate-dielectric, to achieve a similar doping effect. In doing so, the enhanced mobility of the TCO/high-k interface is retained while simultaneously eliminating the negative drawbacks associated with the presence of charged defects in the gate dielectrics (e.g. frequency dispersion, gate leakage, hysteresis, and poor bias stability). This demonstrates improved understanding of the role of solution-processed high-k dielectrics in field-effect devices as well as provides a practical method to overcome the performance degradation incurred through the use of low-temperature solution-processed TCOs.

Book Additive Enhancements for Solution Processed Metal Oxide Thin Film Transistors

Download or read book Additive Enhancements for Solution Processed Metal Oxide Thin Film Transistors written by Philip Li and published by . This book was released on 2018 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solution processed metal oxide semiconductors have attracted much attention as a promising class of materials to be used as the channel material in thin film transistors due to its transparency, high mobility, scalability, and low cost of manufacturing. Nevertheless, there are still major challenges in terms of processing, device performance and stability that need to be overcome before this process can be implemented for large scale production. In this thesis, several chemical additives and their effects on film formation, processing temperature and electrical parameters such as field effect mobility, on-off ratio and threshold voltage shifts under PBS stress tests were investigated. In particular, the addition of ethylene glycol, acetylacetone, and acetic acid were investigated in a metal oxide precursor solution. It was demonstrated that ethylene glycol significantly improved the wettability of the concentrated IGZO solution and resulted in a minimal contact angle of 3.8 degrees. This allowed for coating a concentrated metal oxide precursor solution (0.5M) five times the baseline concentration while still maintaining high film formation quality. The addition of acetylacetone allowed for low annealing temperatures (less than 300i C) through the combustion synthesis route and serves as a protection group to prevent premature formation of metal oxide network in solution. Finally, the addition of acetic acid improved the solubility of the metal precursor in the solution and allowed for higher concentrations of metal precursor to be dissolved in solution, which becomes important if higher viscosity precursors for thick films are needed. The addition of these additives produced devices with near zero turn on voltage, excellent on-off ratio (>107), and superior stability (less than eight volts of threshold voltage shift at 10,000 seconds of PBS). The findings in this thesis present improved synthesis routes for solution processed semiconductors and open new possibilities for the fabrication of flexible electronic devices and next generation large scale consumer electronics.

Book Organic Thin Film Transistor Integration

Download or read book Organic Thin Film Transistor Integration written by Flora Li and published by John Wiley & Sons. This book was released on 2011-03-21 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on organic electronics (or plastic electronics) is driven by the need to create systems that are lightweight, unbreakable, and mechanically flexible. With the remarkable improvement in the performance of organic semiconductor materials during the past few decades, organic electronics appeal to innovative, practical, and broad-impact applications requiring large-area coverage, mechanical flexibility, low-temperature processing, and low cost. Thus, organic electronics appeal to a broad range of electronic devices and products including transistors, diodes, sensors, solar cells, lighting, displays, and electronic identification and tracking devices A number of commercial opportunities have been identified for organic thin film transistors (OTFTs), ranging from flexible displays, electronic paper, radio-frequency identification (RFID) tags, smart cards, to low-cost disposable electronic products, and more are continually being invented as the technology matures. The potential applications for "plastic electronics" are huge but several technological hurdles must be overcome. In many of these applications, transistor serves as a fundamental building block to implement the necessary electronic functionality. Hence, research in organic thin film transistors (OTFTs) or organic field effect transistors (OFETs) is eminently pertinent to the development and realization of organic electronics. This book presents a comprehensive investigation of the production and application of a variety of polymer based transistor devices and circuits. It begins with a detailed overview of Organic Thin Film Transistors (OTFTs) and discusses the various possible fabrication methods reported so far. This is followed by two major sections on the choice, optimization and implementation of the gate dielectric material to be used. Details of the effects of processing on the efficiency of the contacts are then provided. The book concludes with a chapter on the integration of such devices to produce a variety of OTFT based circuits and systems. The key objective is to examine strategies to exploit existing materials and techniques to advance OTFT technology in device performance, device manufacture, and device integration. Finally, the collective knowledge from these investigations facilitates the integration of OTFTs into organic circuits, which is expected to contribute to the development of new generation of all-organic displays for communication devices and other pertinent applications. Overall, a major outcome of this work is that it provides an economical means for organic transistor and circuit integration, by enabling the use of a well-established PECVD infrastructure, while not compromising the performance of electronics. The techniques established here are not limited to use in OTFTs only; the organic semiconductor and SiNx combination can be used in other device structures (e.g., sensors, diodes, photovoltaics). Furthermore, the approach and strategy used for interface optimization can be extended to the development of other materials systems.

Book Multinary Metal Oxide Semiconductors   A Study of Different Material Systems and Their Application in Thin film Transistors

Download or read book Multinary Metal Oxide Semiconductors A Study of Different Material Systems and Their Application in Thin film Transistors written by Shawn Sanctis and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Composition Engineering for Solution Processed Gallium Rich Indium Gallium Zinc Oxide Thin Film Transistors

Download or read book Composition Engineering for Solution Processed Gallium Rich Indium Gallium Zinc Oxide Thin Film Transistors written by Isaac Caleb Wang and published by . This book was released on 2018 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal oxides have risen to prominence in recent years as a promising active layer for thin film transistors (TFTs). One of the main reasons for this has been its value in display technology. Conventionally, displays have relied on amorphous hydrogenated silicon (a-Si:H) TFTs but the demand for large area displays with high resolution, fast response time, low power consumption and compatibility with integrated driving circuits have prompted research into other semiconducting materials. As a result, metal oxides have become major prospects to replace a-Si:H with their high-performance electrical characteristics and simplicity of processing, making them valuable switching elements in display technology. Particularly, quaternary metal oxides such as the amorphous Indium-Gallium-Zinc-Oxide (IGZO) have demonstrated extremely high performances as TFTs, prompting extensive research in the field. The conventional method of producing metal oxide thin films has been through vacuum deposition methods such as sputtering. However, for large area applications these vacuum deposition methods face inherent limitations which prevent easy application and device fabrication. Facing these restrictions, solution-processing has become a popularly researched alternative in producing metal oxide thin films due to their simple processing requirements, low cost, and ability to be applied over large areas. In solution-processed IGZO, there have been a couple approaches to improve device performance and stability as well as simplify processing. In this work, we produce a gallium-rich 2:2:1 IGZO TFT using solution processes and study its electrical characteristics and stability. In this paper, we demonstrate a working solution-processed gallium-rich 2:2:1 IGZO TFT and compare it to a solution-processed indium-rich device to quantify its stability and performance. Through this work, we show that solution-processing is a viable fabrication method for gallium-rich IGZO, which can be a high-stability alternative to other compositions of IGZO devices.

Book Oxide Thin Films  Multilayers  and Nanocomposites

Download or read book Oxide Thin Films Multilayers and Nanocomposites written by Paolo Mele and published by Springer. This book was released on 2015-03-26 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the science of nanostructured oxides. It details the fundamental techniques and methodologies involved in oxides thin film and bulk growth, characterization and device processing, as well as heterostructures. Both, experts in oxide nanostructures and experts in thin film heteroepitaxy, contribute the interactions described within this book.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Download or read book Chemically Deposited Nanocrystalline Metal Oxide Thin Films written by Fabian I. Ezema and published by Springer Nature. This book was released on 2021-06-26 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.