EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Study of Well balanced Finite Volume Methods and Refinement Indicators for the Shallow Water Equations

Download or read book A Study of Well balanced Finite Volume Methods and Refinement Indicators for the Shallow Water Equations written by Sudi Mungkasi and published by . This book was released on 2012 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis studies solutions to the shallow water equations analytically and numerically. The study is separated into three parts. The first part is about well-balanced finite volume methods to solve steady and unsteady state problems. A method is said to be well-balanced if it preserves an unperturbed steady state at the discrete level. We implement hydrostatic reconstructions for the well-balanced methods with respect to the steady state of a lake at rest. Four combinations of quantity reconstructions are tested. Our results indicate an appropriate combination of quantity reconstructions for dealing with steady and unsteady state problems. The second part presents some new analytical solutions to debris avalanche problems and reviews the implicit Carrier-Greenspan periodic solution for flows on a sloping beach. The analytical solutions to debris avalanche problems are derived using characteristics and a variable transformation technique. The analytical solutions are used as benchmarks to test the performance of numerical solutions. For the Carrier-Greenspan periodic solution, we show that the linear approximation of the Carrier-Greenspan periodic solution may result in large errors in some cases. If an explicit approximation of the Carrier-Greenspan periodic solution is needed, higher order approximations should be considered. We propose second order approximations of the Carrier-Greenspan periodic solution and present a way to get higher order approximations. The third part discusses refinement indicators used in adaptive finite volume methods to detect smooth and nonsmooth regions. In the adaptive finite volume methods, smooth regions are coarsened to reduce the computational costs and nonsmooth regions are refined to get more accurate solutions. We consider the numerical entropy production and weak local residuals as refinement indicators. Regarding the numerical entropy production, our work is the first to implement the numerical entropy production as a refinement indicator into adaptive finite volume methods used to solve the shallow water equations. Regarding weak local residuals, we propose formulations to compute weak local residuals on nonuniform meshes. Our numerical experiments show that both the numerical entropy production and weak local residuals are successful as refinement indicators.

Book Intelligence in the Era of Big Data

Download or read book Intelligence in the Era of Big Data written by Rolly Intan and published by Springer. This book was released on 2015-03-12 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th International Conference on Soft Computing, Intelligent Systems, and Information Technology, ICSIIT 2015, held in Bali, Indonesia, in March 2015. The 34 revised full papers presented together with 19 short papers, one keynote and 2 invited talks were carefully reviewed and selected from 92 submissions. The papers cover a wide range of topics related to intelligence in the era of Big Data, such as fuzzy logic and control system; genetic algorithm and heuristic approaches; artificial intelligence and machine learning; similarity-based models; classification and clustering techniques; intelligent data processing; feature extraction; image recognition; visualization techniques; intelligent network; cloud and parallel computing; strategic planning; intelligent applications; and intelligent systems for enterprise, government and society.

Book Well Balanced Finite Volume Evolution Galerkin Methods for the Shallow Water Equations

Download or read book Well Balanced Finite Volume Evolution Galerkin Methods for the Shallow Water Equations written by Mária Lukáčová-Medviďova and published by . This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Well balanced Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Source Terms

Download or read book Well balanced Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Source Terms written by Mária Lukáčová-Medviďová and published by . This book was released on 2005 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Algorithms for Shallow Water Equations

Download or read book Computational Algorithms for Shallow Water Equations written by Eleuterio F. Toro and published by Springer Nature. This book was released on with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Mathematics and Advanced Applications

Download or read book Numerical Mathematics and Advanced Applications written by Alfredo Bermúdez de Castro and published by Springer Science & Business Media. This book was released on 2007-10-08 with total page 1202 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings collect lectures given at ENUMATH 2005, the 6th European Conference on Numerical Mathematics and Advanced Applications held in Santiago de Compostela, Spain in July, 2005. Topics include applications such as fluid dynamics, electromagnetism, structural mechanics, interface problems, waves, finance, heat transfer, unbounded domains, numerical linear algebra, convection-diffusion, as well as methodologies such as a posteriori error estimates, discontinuous Galerkin methods, multiscale methods, optimization, and more.

Book Finite Volume Methods for the Incompressible Navier   Stokes Equations

Download or read book Finite Volume Methods for the Incompressible Navier Stokes Equations written by Jian Li and published by Springer Nature. This book was released on 2022-01-20 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book aims to provide a comprehensive understanding of the most recent developments in finite volume methods. Its focus is on the development and analysis of these methods for the two- and three-dimensional Navier-Stokes equations, supported by extensive numerical results. It covers the most used lower-order finite element pairs, with well-posedness and optimal analysis for these finite volume methods.The authors have attempted to make this book self-contained by offering complete proofs and theoretical results. While most of the material presented has been taught by the authors in a number of institutions over the past several years, they also include several updated theoretical results for the finite volume methods for the incompressible Navier-Stokes equations. This book is primarily developed to address research needs for students and academic and industrial researchers. It is particularly valuable as a research reference in the fields of engineering, mathematics, physics, and computer sciences.

Book Shock Capturing Methods for Free Surface Shallow Flows

Download or read book Shock Capturing Methods for Free Surface Shallow Flows written by E. F. Toro and published by . This book was released on 2001-03-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of its kind in the field, this title examines the use of modern, shock-capturing finite volume numerical methods, in the solution of partial differential equations associated with free-surface flows, which satisfy the shallow-water type assumption (including shallow water flows, dense gases and mixtures of materials as special samples). Starting with a general presentation of the governing equations for free-surface shallow flows and a discussion of their physical applicability, the book goes on to analyse the mathematical properties of the equations, in preparation for the presentation of the exact solution of the Riemann problem for wet and dry beds. After a general introduction to the finite volume approach, several chapters are then devoted to describing a variety of modern shock-capturing finite volume numerical methods, including Godunov methods of the upwind and centred type. Approximate Riemann solvers following various approaches are studied in detail as is their use in the Godunov approach for constructing low and high-order upwind TVD methods. Centred TVD schemes are also presented. Two chapters are then devoted to practical applications. The book finishes with an overview of potential practical applications of the methods studied, along with appropriate reference to sources of further information. Features include: * Algorithmic and practical presentation of the methods * Practical applications such as dam-break modelling and the study of bore reflection patterns in two space dimensions * Sample computer programs and accompanying numerical software (details available at www.numeritek.com) The book is suitable for teaching postgraduate students of civil, mechanical, hydraulic and environmental engineering, meteorology, oceanography, fluid mechanics and applied mathematics. Selected portions of the material may also be useful in teaching final year undergraduate students in the above disciplines. The contents will also be of interest to research scientists and engineers in academia and research and consultancy laboratories.

Book Shallow Water Hydrodynamics

Download or read book Shallow Water Hydrodynamics written by W.Y. Tan and published by Elsevier. This book was released on 1992-08-17 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within this monograph a comprehensive and systematic knowledge on shallow-water hydrodynamics is presented. A two-dimensional system of shallow-water equations is analyzed, including the mathematical and mechanical backgrounds, the properties of the system and its solution. Also featured is a new mathematical simulation of shallow-water flows by compressible plane flows of a special virtual perfect gas, as well as practical algorithms such as FDM, FEM, and FVM. Some of these algorithms have been utilized in solving the system, while others have been utilized in various applied fields. An emphasis has been placed on several classes of high-performance difference schemes and boundary procedures which have found wide uses recently for solving the Euler equations of gas dynamics in aeronautical and aerospatial engineering. This book is constructed so that it may serve as a handbook for practicians. It will be of interest to scientists, designers, teachers, postgraduates and professionals in hydraulic, marine, and environmental engineering; especially those involved in the mathematical modelling of shallow-water bodies.

Book The Shallow Water Wave Equations  Formulation  Analysis and Application

Download or read book The Shallow Water Wave Equations Formulation Analysis and Application written by Ingemar Kinnmark and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is total fluid depth (L) v is vertically averaged fluid velocity in eastward direction (x) and northward direction (y) (LIT) t is the non-linear friction coefficient (liT) f is the Coriolis parameter (liT) is acceleration due to gravity (L/T2) g A is atmospheric (wind) forcing in eastward direction (x) and northward direction (y) (L2/T2) v is the gradient operator (IlL) k is a unit vector in the vertical direction (1) x is positive eastward (L) is positive northward (L) Y t is time (T) These Non-Conservative Momentum Equations may be compared to the Conservative Momentum Equations (2. 4). The latter originate directly from a vertical integration of a momentum balance over a fluid ele ment. The former are obtained indirectly, through subtraction of the continuity equation from the latter. Equations (1. 1) and (1. 2) are valid under the following assumptions: 1. The fluid is well-mixed vertically with a hydrostatic pressure gradient. 2. The density of the fluid is constant.

Book Numerical Methods for Shallow Water Flow

Download or read book Numerical Methods for Shallow Water Flow written by C.B. Vreugdenhil and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wide variety of problems are associated with the flow of shallow water, such as atmospheric flows, tides, storm surges, river and coastal flows, lake flows, tsunamis. Numerical simulation is an effective tool in solving them and a great variety of numerical methods are available. The first part of the book summarizes the basic physics of shallow-water flow needed to use numerical methods under various conditions. The second part gives an overview of possible numerical methods, together with their stability and accuracy properties as well as with an assessment of their performance under various conditions. This enables the reader to select a method for particular applications. Correct treatment of boundary conditions (often neglected) is emphasized. The major part of the book is about two-dimensional shallow-water equations but a discussion of the 3-D form is included. The book is intended for researchers and users of shallow-water models in oceanographic and meteorological institutes, hydraulic engineering and consulting. It also provides a major source of information for applied and numerical mathematicians.

Book Comparison Study of Some Finite Volume and Finite Element Methods for the Shallow Water Equations with Bottom Topography and Friction Terms

Download or read book Comparison Study of Some Finite Volume and Finite Element Methods for the Shallow Water Equations with Bottom Topography and Friction Terms written by Maria Lukacova-Medvidova and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Adaptive Well Balanced Positivity Preserving Central Upwind Scheme for the Shallow Water Equations Over Quadtree Grids

Download or read book An Adaptive Well Balanced Positivity Preserving Central Upwind Scheme for the Shallow Water Equations Over Quadtree Grids written by Seyed Mohammad Ali Ghazizadeh Fard and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Shallow water equations are widely used to model water flows in the field of hydrodynamics and civil engineering. They are complex, and except for some simplified cases, no analytical solution exists for them. Therefore, the partial differential equations of the shallow water system have been the subject of various numerical analyses and studies in past decades. In this study, we construct a stable and robust finite volume scheme for the shallow water equations over quadtree grids. Quadtree grids are two-dimensional semi-structured Cartesian grids that have different applications in several fields of engineering, such as computational fluid dynamics. Quadtree grids refine or coarsen where it is required in the computational domain, which gives the advantage of reducing the computational cost in some problems. Numerical schemes on quadtree grids have different properties. An accurate and robust numerical scheme is able to provide a balance between the flux and source terms, preserve the positivity of the water height and water surface, and is capable of regenerating the grid with respect to different conditions of the problem and computed solution. The proposed scheme uses a piecewise constant approximation and employs a high-order Runge-Kutta method to be able to make the solution high-order in space and time. Hence, in this thesis, we develop an adaptive well-balanced positivity preserving scheme for the shallow water system over quadtree grids utilizing different techniques. We demonstrate the formulations of the proposed scheme over one of the different configurations of quadtree cells. Six numerical benchmark tests confirm the ability of the scheme to accurately solve the problems and to capture small perturbations. Furthermore, we extend the proposed scheme to the coupled variable density shallow water flows and establish an extended method where we focus on eliminating nonphysical oscillations, as well as well-balanced, positivity preserving, and adaptivity properties of the scheme. Four different numerical benchmark tests show that the proposed extension of the scheme is accurate, stable, and robust.

Book An Adaptive Multiblock High order Finite volume Method for Solving the Shallow water Equations on the Sphere

Download or read book An Adaptive Multiblock High order Finite volume Method for Solving the Shallow water Equations on the Sphere written by and published by . This book was released on 2015 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present a high-order finite-volume approach for solving the shallow-water equations on the sphere, using multiblock grids on the cubed-sphere. This approach combines a Runge--Kutta time discretization with a fourth-order accurate spatial discretization, and includes adaptive mesh refinement and refinement in time. Results of tests show fourth-order convergence for the shallow-water equations as well as for advection in a highly deformational flow. Hierarchical adaptive mesh refinement allows solution error to be achieved that is comparable to that obtained with uniform resolution of the most refined level of the hierarchy, but with many fewer operations.

Book Well Balanced Bicharacteristic Based Finite Volume Schemes for Multilayer Shallow Water Systems

Download or read book Well Balanced Bicharacteristic Based Finite Volume Schemes for Multilayer Shallow Water Systems written by Michael Dudzinski and published by . This book was released on 2014 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Shallow Water Flows Using the Discontinuous Galerkin Method

Download or read book Modeling Shallow Water Flows Using the Discontinuous Galerkin Method written by Abdul A. Khan and published by CRC Press. This book was released on 2014-03-03 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fields of science and engineering, its use for hydraulics has so far been limited to simple cases. The book compares numerical results with laboratory experiments and field data, and includes a set of tests that can be used for a wide range of applications. Provides step-by-step implementation details Presents the different forms in which the shallow water flow equations can be written Places emphasis on the details and modifications required to apply the scheme to real-world flow problems This text enables readers to readily understand and develop an efficient computer simulation model that can be used to model flow, contaminant transport, and other aspects in rivers and coastal environments. It is an ideal resource for practicing environmental engineers and researchers in the area of computational hydraulics and fluid dynamics, and graduate students in computational hydraulics.