EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Time Dependent Density Functional Theory

Download or read book Time Dependent Density Functional Theory written by Miguel A.L. Marques and published by Springer Science & Business Media. This book was released on 2006-08-14 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-dependent density functional theory (TDDFT) is based on a set of ideas and theorems quite distinct from those governing ground-state DFT, but emphasizing similar techniques. Today, the use of TDDFT is rapidly growing in many areas of physics, chemistry and materials sciences where direct solution of the Schrödinger equation is too demanding. This is the first comprehensive, textbook-style introduction to the relevant basics and techniques.

Book Transport Properties of Molecular Junctions

Download or read book Transport Properties of Molecular Junctions written by Natalya A. Zimbovskaya and published by Springer. This book was released on 2013-09-07 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts--a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers and professionals.

Book Tunnelling in Molecules

    Book Details:
  • Author : Johannes Kästner
  • Publisher : Royal Society of Chemistry
  • Release : 2020-09-22
  • ISBN : 1839160381
  • Pages : 453 pages

Download or read book Tunnelling in Molecules written by Johannes Kästner and published by Royal Society of Chemistry. This book was released on 2020-09-22 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum tunnelling is one of the strangest phenomena in chemistry, where we see the wave nature of atoms acting in “impossible” ways. By letting molecules pass through the kinetic barrier instead of over it, this effect can lead to chemical reactions even close to the absolute zero, to atypical spectroscopic observations, to bizarre selectivity, or to colossal isotopic effects. Quantum mechanical tunnelling observations might be infrequent in chemistry, but it permeates through all its disciplines producing remarkable chemical outcomes. For that reason, the 21st century has seen a great increase in theoretical and experimental findings involving molecular tunnelling effects, as well as in novel techniques that permit their accurate predictions and analysis. Including experimental, computational and theoretical chapters, from the physical and organic to the biochemistry fields, from the applied to the academic arenas, this new book provides a broad and conceptual perspective on tunnelling reactions and how to study them. Quantum Tunnelling in Molecules is the obligatory stop for both the specialist and those new to this world.

Book Molecular Electronics

    Book Details:
  • Author : Juan Carlos Cuevas
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814282588
  • Pages : 724 pages

Download or read book Molecular Electronics written by Juan Carlos Cuevas and published by World Scientific. This book was released on 2010 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book Organic Optoelectronics

Download or read book Organic Optoelectronics written by Wenping Hu and published by John Wiley & Sons. This book was released on 2012-11-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by internationally recognized experts in the field with academic as well as industrial experience, this book concisely yet systematically covers all aspects of the topic. The monograph focuses on the optoelectronic behavior of organic solids and their application in new optoelectronic devices. It covers organic field-effect and organic electroluminescent materials and devices, organic photonics, materials and devices, as well as organic solids in photo absorption and energy conversion. Much emphasis is laid on the preparation of functional materials and the fabrication of devices, from materials synthesis and purification, to physicochemical properties and the basic processes and working principles of the devices. The only book to cover fundamentals, applications, and the latest research results, this is a handy reference for both researchers and those new to the field. From the contents: * Electronic process in organic solids * Organic/polymeric semiconductors for field-effect transistors * Organic/polymeric field-effect transistors * Organic circuits and organic single molecular transistors * Polymer light-emitting Diodes (PLEDs): devices and materials * Organic solids for photonics * Organic photonic devices * Organic solar cells based on small molecules * Polymer solar cells * Dye-sensitized solar cells (DSSCs) * Organic thermoelectric power devices

Book The Fundamentals of Density Functional Theory

Download or read book The Fundamentals of Density Functional Theory written by and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Density functional methods form the basis of a diversified and very active area of present days computational atomic, molecular, solid state and even nuclear physics. A large number of computational physicists use these meth ods merely as a recipe, not reflecting too much upon their logical basis. One also observes, despite of their tremendeous success, a certain reservation in their acceptance on the part of the more theoretically oriented researchers in the above mentioned fields. On the other hand, in the seventies (Thomas Fermi theory) and in the eighties (Hohenberg-Kohn theory), density func tional concepts became subjects of mathematical physics. In 1994 a number of activities took place to celebrate the thirtieth an niversary of Hohenberg-Kohn-Sham theory. I took this an occassion to give lectures on density functional theory to senior students and postgraduates in the winter term of 1994, particularly focusing on the logical basis of the the ory. Preparing these lectures, the impression grew that, although there is a wealth of monographs and reviews in the literature devoted to density func tional theory, the focus is nearly always placed upon extending the practical applications of the theory and on the development of improved approxima tions. The logical foundadion of the theory is found somewhat scattered in the existing literature, and is not always satisfactorily presented. This situation led to the idea to prepare a printed version of the lecture notes, which resulted in the present text.

Book The Molecule Metal Interface

Download or read book The Molecule Metal Interface written by Norbert Koch and published by John Wiley & Sons. This book was released on 2013-02-08 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviewing recent progress in the fundamental understanding of the molecule-metal interface, this useful addition to the literature focuses on experimental studies and introduces the latest analytical techniques as applied to this interface. The first part covers basic theory and initial principle studies, while the second part introduces readers to photoemission, STM, and synchrotron techniques to examine the atomic structure of the interfaces. The third part presents photoelectron spectroscopy, high-resolution UV photoelectron spectroscopy and electron spin resonance to study the electronic structure of the molecule-metal interface. In the closing chapter the editors discuss future perspectives. Written as a senior graduate or senior undergraduate textbook for students in physics, chemistry, materials science or engineering, the book's interdisciplinary approach makes it equally relevant for researchers working in the field of organic and molecular electronics.

Book Quantum Transport

Download or read book Quantum Transport written by Supriyo Datta and published by Cambridge University Press. This book was released on 2005-06-16 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.

Book Molecular Electronics

    Book Details:
  • Author : Juan Carlos Cuevas
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814282596
  • Pages : 724 pages

Download or read book Molecular Electronics written by Juan Carlos Cuevas and published by World Scientific. This book was released on 2010 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. The birth of molecular electronics. 1.1. Why molecular electronics?. 1.2. A brief history of molecular electronics. 1.3. Scope and structure of the book -- 2. Fabrication of metallic atomic-size contacts. 2.1. Introduction. 2.2. Techniques involving the scanning electron microscope (STM). 2.3. Methods using atomic force microscopes (AFM). 2.4. Contacts between macroscopic wires. 2.5. Transmission electron microscope. 2.6. Mechanically controllable break-junctions (MCBJ). 2.7. Electromigration technique. 2.8. Electrochemical methods. 2.9. Recent developments. 2.10. Electronic transport measurements. 2.11. Exercises -- 3. Contacting single molecules: Experimental techniques. 3.1. Introduction. 3.2. Molecules for molecular electronics. 3.3. Deposition of molecules. 3.4. Contacting single molecules. 3.5. Contacting molecular ensembles. 3.6. Exercises -- 4. The scattering approach to phase-coherent transport in nanocontacts. 4.1. Introduction. 4.2. From mesoscopic conductors to atomic-scale junctions. 4.3. Conductance is transmission : heuristic derivation of the Landauer formula. 4.4. Penetration of a potential barrier : tunnel effect. 4.5. The scattering matrix. 4.6. Multichannel Landauer formula. 4.7. Shot noise. 4.8. Thermal transport and thermoelectric phenomena. 4.9. Limitations of the scattering approach. 4.10. Exercises -- 5. Introduction to Green's function techniques for systems in equilibrium. 5.1. The Schrodinger and Heisenberg pictures. 5.2. Green's functions of a noninteracting electron system. 5.3. Application to tight-binding Hamiltonians. 5.4. Green's functions in time domain. 5.5. Exercises -- 6. Green's functions and Feynman diagrams. 6.1. The interaction picture. 6.2. The time-evolution operator. 6.3. Perturbative expansion of causal Green's functions. 6.4. Wick's theorem. 6.5. Feynman diagrams. 6.6. Feynman diagrams in energy space. 6.7. Electronic self-energy and Dyson's equation. 6.8. Self-consistent diagrammatic theory : the Hartree-Fock approximation. 6.9. The Anderson model and the Kondo effect. 6.10. Final remarks. 6.11. Exercises -- 7. Nonequilibrium Green's functions formalism. 7.1. The Keldysh formalism. 7.2. Diagrammatic expansion in the Keldysh formalism. 7.3. Basic relations and equations in the Keldysh formalism. 7.4. Application of Keldysh formalism to simple transport problems. 7.5. Exercises -- 8. Formulas of the electrical current : exploiting the Keldysh formalism. 8.1. Elastic current : microscopic derivation of the Landauer formula. 8.2. Current through an interacting atomic-scale junction. 8.3. Time-dependent transport in nanoscale junctions. 8.4. Exercises -- 9. Electronic structure I: Tight-binding approach. 9.1. Basics of the tight-binding approach. 9.2. The extended Huckel method. 9.3. Matrix elements in solid state approaches. 9.4. Slater-Koster two-center approximation. 9.5. Some illustrative examples. 9.6. The NRL tight-binding method. 9.7. The tight-binding approach in molecular electronics. 9.8. Exercises -- 10. Electronic structure II : density functional theory. 10.1. Elementary quantum mechanics. 10.2. Early density functional theories. 10.3. The Hohenberg-Kohn theorems. 10.4. The Kohn-Sham approach. 10.5. The exchange-correlation functionals. 10.6. The basic machinery of DFT. 10.7. DFT performance. 10.8. DFT in molecular electronics. 10.9. Exercises -- 11. The conductance of a single atom. 11.1. Landauer approach to conductance: brief reminder. 11.2. Conductance of atomic-scale contacts. 11.3. Conductance histograms. 11.4. Determining the conduction channels. 11.5. The chemical nature of the conduction channels of oneatom contacts. 11.6. Some further issues. 11.7. Conductance fluctuations. 11.8. Atomic chains : parity oscillations in the conductance. 11.9. Concluding remarks. 11.10. Exercises -- 12. Spin-dependent transport in ferromagnetic atomic contacts. 12.1. Conductance of ferromagnetic atomic contacts. 12.2. Magnetoresistance of ferromagnetic atomic contacts. 12.3. Anisotropic magnetoresistance in atomic contacts. 12.4. Concluding remarks and open problems -- 13. Coherent transport through molecular junctions I : basic concepts. 13.1. Identifying the transport mechanism in single-molecule junctions. 13.2. Some lessons from the resonant tunneling model. 13.3. A two-level model. 13.4. Length dependence of the conductance. 13.5. Role of conjugation in [symbol]-electron systems. 13.6. Fano resonances. 13.7. Negative differential resistance. 13.8. Final remarks. 13.9. Exercises -- 14. Coherent transport through molecular junctions II : test-bed molecules. 14.1. Coherent transport through some test-bed molecules. 14.2. Metal-molecule contact : the role of anchoring groups. 14.3. Tuning chemically the conductance : the role of side-groups. 14.4. Controlled STM-based single-molecule experiments. 14.5. Conclusions and open problems -- 15. Single-molecule transistors : Coulomb blockade and Kondo physics. 15.1. Introduction. 15.2. Charging effects in transport through nanoscale devices. 15.3. Single-molecule three-terminal devices. 15.4. Coulomb blockade theory : constant interaction model. 15.5. Towards a theory of Coulomb blockade in molecular transistors. 15.6. Intermediate coupling : cotunneling and Kondo effect. 15.7. Single-molecule transistors : experimental results. 15.8. Exercises -- 16. Vibrationally-induced inelastic current I : experiment. 16.1. Introduction. 16.2. Inelastic electron tunneling spectroscopy (IETS). 16.3. Highly conductive junctions : point-contact spectroscopy (PCS). 16.4. Crossover between PCS and IETS. 16.5. Resonant inelastic electron tunneling spectroscopy (RIETS). 16.6. Summary of vibrational signatures -- 17. Vibrationally-induced inelastic current II : theory. 17.1. Weak electron-phonon coupling regime. 17.2. Intermediate electron-phonon coupling regime. 17.3. Strong electron-phonon coupling regime. 17.4. Concluding remarks and open problems. 17.5. Exercises -- 18. The hopping regime and transport through DNA molecules. 18.1. Signatures of the hopping regime. 18.2. Hopping transport in molecular junctions : experimental examples. 18.3. DNA-based molecular junctions. 18.4. Exercises -- 19. Beyond electrical conductance : shot noise and thermal transport. 19.1. Shot noise in atomic and molecular junctions. 19.2. Heating and heat conduction. 19.3. Thermoelectricity in molecular junctions -- 20. Optical properties of current-carrying molecular junctions. 20.1. Surface-enhanced Raman spectroscopy of molecular junctions. 20.2. Transport mechanisms in irradiated molecular junctions. 20.3. Theory of photon-assisted tunneling. 20.4. Experiments on radiation-induced transport in atomic and molecular junctions. 20.5. Resonant current amplification and other transport phenomena in ac driven molecular junctions. 20.6. Fluorescence from current-carrying molecular junctions. 20.7. Molecular optoelectronic devices. 20.8. Final remarks. 20.9. Exercises -- 21. What is missing in this book?

Book First Principles Approaches to Spectroscopic Properties of Complex Materials

Download or read book First Principles Approaches to Spectroscopic Properties of Complex Materials written by Cristiana Di Valentin and published by Springer. This book was released on 2014-09-26 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.

Book Unimolecular and Supramolecular Electronics II

Download or read book Unimolecular and Supramolecular Electronics II written by Robert M. Metzger and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: G. C. Solomon C. Herrmann M. A. Ratner Molecular Electronic Junction Transport: Some Pathways and Some Ideas R. M. Metzger D. L. Mattern Unimolecular Electronic Devices B. Branchi F. C. Simeone M. A. Rampi Active and Non-Active Large-Area Metal–Molecules–Metal Junctions C. Li A. Mishchenko T. Wandlowski Charge Transport in Single Molecular Junctions at the Solid/Liquid Interface K. W. Hipps Tunneling Spectroscopy of Organic Monolayers and Single Molecules N. Renaud M. Hliwa C. Joachim Single Molecule Logical Devices

Book Annual Review

Download or read book Annual Review written by Bunshi Kagaku Kenkyūjo and published by . This book was released on 2007 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Materials Chemistry

Download or read book Computational Materials Chemistry written by L.A. Curtiss and published by Springer Science & Business Media. This book was released on 2004-05-26 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume illustrates the contributions that modern techniques in simulation and modeling can make to materials chemistry research and the level of accuracy achievable. While new developments in simulation and modeling are discussed to some extent, the major emphasis is on applications to materials chemistry including in areas of surface chemistry, solid state chemistry, polymer chemistry and nanoscience. The phenomenal improvement in both theoretical methods and computer technology have made it possible for computational chemistry to achieve a new level of chemical accuracy that is providing significant insight into the effect of chemical reactivity on the behavior of materials and helping to design new materials. Audience: Researchers, teachers, and students in chemistry and physics.

Book                                                       1

    Book Details:
  • Author :
  • Publisher : 清华大学出版社有限公司
  • Release : 2004
  • ISBN : 9787302082149
  • Pages : 492 pages

Download or read book 1 written by and published by 清华大学出版社有限公司. This book was released on 2004 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Wires

    Book Details:
  • Author : Luisa de Cola
  • Publisher : Springer Science & Business Media
  • Release : 2005-08-25
  • ISBN : 9783540257936
  • Pages : 194 pages

Download or read book Molecular Wires written by Luisa de Cola and published by Springer Science & Business Media. This book was released on 2005-08-25 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by numerous experts

Book Proceedings of the National Academy of Sciences of the United States of America

Download or read book Proceedings of the National Academy of Sciences of the United States of America written by National Academy of Sciences (U.S.). and published by . This book was released on 2005 with total page 1384 pages. Available in PDF, EPUB and Kindle. Book excerpt: