EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Streamline Upwind Full Galerkin Method for Space time Convection Dominated transport Problems

Download or read book A Streamline Upwind Full Galerkin Method for Space time Convection Dominated transport Problems written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: An original space-time finite element approach for the solution of the diffusion-convection equation is proposed in this paper. A slight manipulation of the differential equation suggests that transient transport problems may in fact be seen as steady-state space-time transport problems, accurately and easily soluble by the standard Galerkin technique. However, concerning convective transport involving sharp fronts or coarse discretization, it is shown that implementation of dissipation along space-time trajectories significantly improves the solutions. Classical comparative test problems are run to establish the performances of this method, and to show the limits of the more sophisticated Petrov and Taylor-Galerkin schemes. Evocation of a possible space-time anisotropy generated by usual finite difference time-stepping procedures, as well as comparative analysis of amplification matrices, help to understand the accuracy and the robustness of the proposed approach.

Book Applied Mechanics Reviews

Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1991 with total page 1380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Methods for Flow Problems

Download or read book Finite Element Methods for Flow Problems written by Jean Donea and published by John Wiley & Sons. This book was released on 2003-06-02 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die Finite-Elemente-Methode, eines der wichtigsten in der Technik verwendeten numerischen Näherungsverfahren, wird hier gründlich und gut verständlich, aber ohne ein Zuviel an mathematischem Formalismus abgehandelt. Insbesondere geht es um die Anwendung der Methode auf Strömungsprobleme. Alle wesentlichen aktuellen Forschungsergebnisse wurden in den Band aufgenommen; viele davon sind bisher nur verstreut in der Originalliteratur zu finden.

Book High Order Methods for Computational Physics

Download or read book High Order Methods for Computational Physics written by Timothy J. Barth and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.

Book The Local Discontinuous Galerkin Method for Time Dependent Convection Diffusion Systems

Download or read book The Local Discontinuous Galerkin Method for Time Dependent Convection Diffusion Systems written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-13 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we study the Local Discontinuous Galerkin methods for nonlinear, time-dependent convection-diffusion systems. These methods are an extension of the Runge-Kutta Discontinuous Galerkin methods for purely hyperbolic systems to convection-diffusion systems and share with those methods their high parallelizability, their high-order formal accuracy, and their easy handling of complicated geometries, for convection dominated problems. It is proven that for scalar equations, the Local Discontinuous Galerkin methods are L(sup 2)-stable in the nonlinear case. Moreover, in the linear case, it is shown that if polynomials of degree k are used, the methods are k-th order accurate for general triangulations; although this order of convergence is suboptimal, it is sharp for the LDG methods. Preliminary numerical examples displaying the performance of the method are shown. Cockburn, Bernardo and Shu, Chi-Wang Langley Research Center NAS1-19480; DAAH04-94-G-0205; NSF DMS-94-00814; NSF DMS-94-07952; NAG1-1145; AF-AFOSR-95-1-0074; RTOP 505-90-52-01...

Book Progress in Partial Differential Equations

Download or read book Progress in Partial Differential Equations written by Michel Chipot and published by CRC Press. This book was released on 1996-04-18 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Research Note presents some recent advances in various important domains of partial differential equations and applied mathematics, in particular for calculus of variations and fluid flows. These topics are now part of various areas of science and have experienced tremendous development during the last decades.

Book Finite Element Methods for Convection Dominated Flows

Download or read book Finite Element Methods for Convection Dominated Flows written by American Society of Mechanical Engineers. Applied Mechanics Division and published by . This book was released on 1979 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Fluid Dynamics

Download or read book Computational Fluid Dynamics written by T. J. Chung and published by Cambridge University Press. This book was released on 2002-02-07 with total page 1040 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly, computational fluid dynamics (CFD) techniques are being used to study and solve complex fluid flow and heat transfer problems. This comprehensive book ranges from elementary concepts for the beginner to state-of-the-art CFD for the practitioner. It begins with CFD preliminaries, in which the basic principles of finite difference (FD), finite element (FE), and finite volume (FV) methods are discussed and illustrated through examples, with step-by-step hand calculations. Then, FD and FE methods respectively are covered, including both historical developments and recent contributions. The next section is devoted to structured and unstructured grids, adaptive methods, computing techniques, and parallel processing. Finally, the author describes a variety of practical applications to problems in turbulence, reacting flows and combustion, acoustics, combined mode radiative heat transfer, multiphase flows, electromagnetic fields, and relativistic astrophysical flows. Students and practitioners - particularly in mechanical, aerospace, chemical, and civil engineering - will use this authoritative text to learn about and apply numerical techniques to the solution of fluid dynamics problems.

Book Advanced Finite Element Methods with Applications

Download or read book Advanced Finite Element Methods with Applications written by Thomas Apel and published by Springer. This book was released on 2019-06-28 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.

Book Advances in Applied Mechanics

Download or read book Advances in Applied Mechanics written by and published by Academic Press. This book was released on 1992-01-08 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Applied Mechanics

Book The Local Discontinuous Galerkin Method for Time dependent Convection diffusion Systems

Download or read book The Local Discontinuous Galerkin Method for Time dependent Convection diffusion Systems written by Bernardo Cockburn and published by . This book was released on 1997 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Partial Differential Equations

Download or read book Computational Partial Differential Equations written by Hans Petter Langtangen and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.

Book Computational Science and Its Applications     ICCSA 2016

Download or read book Computational Science and Its Applications ICCSA 2016 written by Osvaldo Gervasi and published by Springer. This book was released on 2016-07-01 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: The five-volume set LNCS 9786-9790 constitutes the refereed proceedingsof the 16th International Conference on Computational Science and ItsApplications, ICCSA 2016, held in Beijing, China, in July 2016. The 239 revised full papers and 14 short papers presented at 33 workshops were carefully reviewed and selected from 849 submissions. They are organized in five thematical tracks: computational methods, algorithms and scientific applications; high performance computing and networks; geometric modeling, graphics and visualization; advanced and emerging applications; and information systems and technologies.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Environmental Health Perspectives

Download or read book Environmental Health Perspectives written by and published by . This book was released on 1990 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Methods in Incompressible  Adiabatic  and Compressible Flows

Download or read book Finite Element Methods in Incompressible Adiabatic and Compressible Flows written by Mutsuto Kawahara and published by Springer. This book was released on 2016-04-04 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the finite element method in fluid flows. It is targeted at researchers, from those just starting out up to practitioners with some experience. Part I is devoted to the beginners who are already familiar with elementary calculus. Precise concepts of the finite element method remitted in the field of analysis of fluid flow are stated, starting with spring structures, which are most suitable to show the concepts of superposition/assembling. Pipeline system and potential flow sections show the linear problem. The advection–diffusion section presents the time-dependent problem; mixed interpolation is explained using creeping flows, and elementary computer programs by FORTRAN are included. Part II provides information on recent computational methods and their applications to practical problems. Theories of Streamline-Upwind/Petrov–Galerkin (SUPG) formulation, characteristic formulation, and Arbitrary Lagrangian–Eulerian (ALE) formulation and others are presented with practical results solved by those methods.

Book Godunov Methods

    Book Details:
  • Author : E.F. Toro
  • Publisher : Springer Science & Business Media
  • Release : 2001-12-31
  • ISBN : 9780306466014
  • Pages : 1100 pages

Download or read book Godunov Methods written by E.F. Toro and published by Springer Science & Business Media. This book was released on 2001-12-31 with total page 1100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford, in October 1999, to commemorate the 70th birthday of the Russian mathematician Sergei K. Godunov. The central theme of this book is numerical methods for hyperbolic conservation laws following Godunov's key ideas contained in his celebrated paper of 1959. Hyperbolic conservation laws play a central role in mathematical modelling in several distinct disciplines of science and technology. Application areas include compressible, single (and multiple) fluid dynamics, shock waves, meteorology, elasticity, magnetohydrodynamics, relativity, and many others. The successes in the design and application of new and improved numerical methods of the Godunov type for hyperbolic conservation laws in the last twenty years have made a dramatic impact in these application areas. The 97 papers cover a very wide range of topics, such as design and analysis of numerical schemes, applications to compressible and incompressible fluid dynamics, multi-phase flows, combustion problems, astrophysics, environmental fluid dynamics, and detonation waves. This book will be a reference book on the subject of numerical methods for hyperbolic partial differential equations for many years to come.All contributions are self-contained but do contain a review element. There is a key paper by Peter Sweby in which a general overview of Godunov methods is given. This contribution is particularly suitable for beginners on the subject. This book is unique: it contains virtually everything concerned with Godunov-type methods for conservation laws. As such it will be of particular interest to academics (applied mathematicians, numerical analysts, engineers, environmental scientists, physicists, and astrophysicists) involved in research on numerical methods for partial differential equations; scientists and engineers concerned with new numerical methods and applications to scientific and engineering problems e.g., mechanical engineers, aeronautical engineers, meteorologists; and academics involved in teaching numerical methods for partial differential equations at the postgraduate level.