EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Second Course in Mathematical Analysis

Download or read book A Second Course in Mathematical Analysis written by J. C. Burkill and published by Cambridge University Press. This book was released on 2002-10-24 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classic calculus text reissued in the Cambridge Mathematical Library. Clear and logical, with many examples.

Book A Companion to Analysis

    Book Details:
  • Author : Thomas William Körner
  • Publisher : American Mathematical Soc.
  • Release : 2004
  • ISBN : 0821834479
  • Pages : 608 pages

Download or read book A Companion to Analysis written by Thomas William Körner and published by American Mathematical Soc.. This book was released on 2004 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book not only provides a lot of solid information about real analysis, it also answers those questions which students want to ask but cannot figure how to formulate. To read this book is to spend time with one of the modern masters in the subject. --Steven G. Krantz, Washington University, St. Louis One of the major assets of the book is Korner's very personal writing style. By keeping his own engagement with the material continually in view, he invites the reader to a similarly high level of involvement. And the witty and erudite asides that are sprinkled throughout the book are a real pleasure. --Gerald Folland, University of Washingtion, Seattle Many students acquire knowledge of a large number of theorems and methods of calculus without being able to say how they hang together. This book provides such students with the coherent account that they need. A Companion to Analysis explains the problems which must be resolved in order to obtain a rigorous development of the calculus and shows the student how those problems are dealt with. Starting with the real line, it moves on to finite dimensional spaces and then to metric spaces. Readers who work through this text will be ready for such courses as measure theory, functional analysis, complex analysis and differential geometry. Moreover, they will be well on the road which leads from mathematics student to mathematician. Able and hard working students can use this book for independent study, or it can be used as the basis for an advanced undergraduate or elementary graduate course. An appendix contains a large number of accessible but non-routine problems to improve knowledge and technique.

Book A Second Course in Complex Analysis

Download or read book A Second Course in Complex Analysis written by William A. Veech and published by Courier Corporation. This book was released on 2014-08-04 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear, self-contained treatment of important areas in complex analysis, this text is geared toward upper-level undergraduates and graduate students. The material is largely classical, with particular emphasis on the geometry of complex mappings. Author William A. Veech, the Edgar Odell Lovett Professor of Mathematics at Rice University, presents the Riemann mapping theorem as a special case of an existence theorem for universal covering surfaces. His focus on the geometry of complex mappings makes frequent use of Schwarz's lemma. He constructs the universal covering surface of an arbitrary planar region and employs the modular function to develop the theorems of Landau, Schottky, Montel, and Picard as consequences of the existence of certain coverings. Concluding chapters explore Hadamard product theorem and prime number theorem.

Book A Second Course in Elementary Differential Equations

Download or read book A Second Course in Elementary Differential Equations written by Paul Waltman and published by Elsevier. This book was released on 2014-05-10 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.

Book Calculus Deconstructed

    Book Details:
  • Author : Zbigniew H. Nitecki
  • Publisher : American Mathematical Society
  • Release : 2022-01-11
  • ISBN : 1470466759
  • Pages : 491 pages

Download or read book Calculus Deconstructed written by Zbigniew H. Nitecki and published by American Mathematical Society. This book was released on 2022-01-11 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculus Deconstructed is a thorough and mathematically rigorous exposition of single-variable calculus for readers with some previous exposure to calculus techniques but not to methods of proof. This book is appropriate for a beginning Honors Calculus course assuming high school calculus or a "bridge course" using basic analysis to motivate and illustrate mathematical rigor. It can serve as a combination textbook and reference book for individual self-study. Standard topics and techniques in single-variable calculus are presented in context of a coherent logical structure, building on familiar properties of real numbers and teaching methods of proof by example along the way. Numerous examples reinforce both practical and theoretical understanding, and extensive historical notes explore the arguments of the originators of the subject. No previous experience with mathematical proof is assumed: rhetorical strategies and techniques of proof (reductio ad absurdum, induction, contrapositives, etc.) are introduced by example along the way. Between the text and exercises, proofs are available for all the basic results of calculus for functions of one real variable.

Book Mathematical Analysis

    Book Details:
  • Author : Andrew Browder
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461207150
  • Pages : 348 pages

Download or read book Mathematical Analysis written by Andrew Browder and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

Book A Second Course in Mathematical Analysis

Download or read book A Second Course in Mathematical Analysis written by Dorairaj Somasundaram and published by Alpha Science International, Limited. This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Second Course in Mathematical Analysis makes an in-depth study of Infinite series, Double sequences and series, power series, sequences and series of functions, Functions of bounded variation, Riemann - Stieltjes integrals, Lebesgue integrals, Fourier series, Multivariable differential calculus, Implicit functions and Extremum problems.

Book Mathematical Analysis I

    Book Details:
  • Author : Vladimir A. Zorich
  • Publisher : Springer Science & Business Media
  • Release : 2004-01-22
  • ISBN : 9783540403869
  • Pages : 610 pages

Download or read book Mathematical Analysis I written by Vladimir A. Zorich and published by Springer Science & Business Media. This book was released on 2004-01-22 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.

Book Analysis I

    Book Details:
  • Author : Terence Tao
  • Publisher : Springer
  • Release : 2016-08-29
  • ISBN : 9811017891
  • Pages : 366 pages

Download or read book Analysis I written by Terence Tao and published by Springer. This book was released on 2016-08-29 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.

Book A Course in Mathematical Analysis  Volume 2  Metric and Topological Spaces  Functions of a Vector Variable

Download or read book A Course in Mathematical Analysis Volume 2 Metric and Topological Spaces Functions of a Vector Variable written by D. J. H. Garling and published by Cambridge University Press. This book was released on 2014-01-23 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and teachers. Volume 1 focuses on the analysis of real-valued functions of a real variable. This second volume goes on to consider metric and topological spaces. Topics such as completeness, compactness and connectedness are developed, with emphasis on their applications to analysis. This leads to the theory of functions of several variables. Differential manifolds in Euclidean space are introduced in a final chapter, which includes an account of Lagrange multipliers and a detailed proof of the divergence theorem. Volume 3 covers complex analysis and the theory of measure and integration.

Book Introduction to Analysis

Download or read book Introduction to Analysis written by Edward Gaughan and published by American Mathematical Soc.. This book was released on 2009 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The topics are quite standard: convergence of sequences, limits of functions, continuity, differentiation, the Riemann integral, infinite series, power series, and convergence of sequences of functions. Many examples are given to illustrate the theory, and exercises at the end of each chapter are keyed to each section."--pub. desc.

Book A First Course in Numerical Analysis

Download or read book A First Course in Numerical Analysis written by Anthony Ralston and published by Courier Corporation. This book was released on 2001-01-01 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.

Book Fundamentals of Mathematical Analysis

Download or read book Fundamentals of Mathematical Analysis written by Adel N. Boules and published by Oxford University Press, USA. This book was released on 2021-03-09 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Mathematical Analysis explores real and functional analysis with a substantial component on topology. The three leading chapters furnish background information on the real and complex number fields, a concise introduction to set theory, and a rigorous treatment of vector spaces. Fundamentals of Mathematical Analysis is an extensive study of metric spaces, including the core topics of completeness, compactness and function spaces, with a good number of applications. The later chapters consist of an introduction to general topology, a classical treatment of Banach and Hilbert spaces, the elements of operator theory, and a deep account of measure and integration theories. Several courses can be based on the book. This book is suitable for a two-semester course on analysis, and material can be chosen to design one-semester courses on topology or real analysis. It is designed as an accessible classical introduction to the subject and aims to achieve excellent breadth and depth and contains an abundance of examples and exercises. The topics are carefully sequenced, the proofs are detailed, and the writing style is clear and concise. The only prerequisites assumed are a thorough understanding of undergraduate real analysis and linear algebra, and a degree of mathematical maturity.

Book Numerical Analysis

    Book Details:
  • Author : James M. Ortega
  • Publisher : SIAM
  • Release : 1990-01-01
  • ISBN : 9781611971323
  • Pages : 214 pages

Download or read book Numerical Analysis written by James M. Ortega and published by SIAM. This book was released on 1990-01-01 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses some of the basic questions in numerical analysis: convergence theorems for iterative methods for both linear and nonlinear equations; discretization error, especially for ordinary differential equations; rounding error analysis; sensitivity of eigenvalues; and solutions of linear equations with respect to changes in the data.

Book A Course in Advanced Calculus

Download or read book A Course in Advanced Calculus written by Robert S. Borden and published by Courier Corporation. This book was released on 2012-09-11 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This remarkable undergraduate-level text offers a study in calculus that simultaneously unifies the concepts of integration in Euclidean space while at the same time giving students an overview of other areas intimately related to mathematical analysis. The author achieves this ambitious undertaking by shifting easily from one related subject to another. Thus, discussions of topology, linear algebra, and inequalities yield to examinations of innerproduct spaces, Fourier series, and the secret of Pythagoras. Beginning with a look at sets and structures, the text advances to such topics as limit and continuity in En, measure and integration, differentiable mappings, sequences and series, applications of improper integrals, and more. Carefully chosen problems appear at the end of each chapter, and this new edition features an additional appendix of tips and solutions for selected problems.

Book Real Mathematical Analysis

    Book Details:
  • Author : Charles Chapman Pugh
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-19
  • ISBN : 0387216847
  • Pages : 445 pages

Download or read book Real Mathematical Analysis written by Charles Chapman Pugh and published by Springer Science & Business Media. This book was released on 2013-03-19 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.

Book A Course of Modern Analysis

Download or read book A Course of Modern Analysis written by E. T. Whittaker and published by Cambridge University Press. This book was released on 1927 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic text is known to and used by thousands of mathematicians and students of mathematics thorughout the world. It gives an introduction to the general theory of infinite processes and of analytic functions together with an account of the principle transcendental functions.