Download or read book A SAS IML Companion for Linear Models written by Jamis J. Perrett and published by Springer Science & Business Media. This book was released on 2009-12-21 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear models courses are often presented as either theoretical or applied. Consequently, students may find themselves either proving theorems or using high-level procedures like PROC GLM to analyze data. There exists a gap between the derivation of formulas and analyses that hide these formulas behind attractive user interfaces. This book bridges that gap, demonstrating theory put into practice. Concepts presented in a theoretical linear models course are often trivialized in applied linear models courses by the facility of high-level SAS procedures like PROC MIXED and PROC REG that require the user to provide a few options and statements and in return produce vast amounts of output. This book uses PROC IML to show how analytic linear models formulas can be typed directly into PROC IML, as they were presented in the linear models course, and solved using data. This helps students see the link between theory and application. This also assists researchers in developing new methodologies in the area of linear models. The book contains complete examples of SAS code for many of the computations relevant to a linear models course. However, the SAS code in these examples automates the analytic formulas. The code for high-level procedures like PROC MIXED is also included for side-by-side comparison. The book computes basic descriptive statistics, matrix algebra, matrix decomposition, likelihood maximization, non-linear optimization, etc. in a format conducive to a linear models or a special topics course. Also included in the book is an example of a basic analysis of a linear mixed model using restricted maximum likelihood estimation (REML). The example demonstrates tests for fixed effects, estimates of linear functions, and contrasts. The example starts by showing the steps for analyzing the data using PROC IML and then provides the analysis using PROC MIXED. This allows students to follow the process that lead to the output.
Download or read book Matrix Algebra Useful for Statistics written by Shayle R. Searle and published by John Wiley & Sons. This book was released on 2017-04-10 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly updated guide to matrix algebra and it uses in statistical analysis and features SAS®, MATLAB®, and R throughout This Second Edition addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations. In addition, André I. Khuri, who has extensive research and teaching experience in the field, joins this new edition as co-author. The Second Edition also: Contains new coverage on vector spaces and linear transformations and discusses computational aspects of matrices Covers the analysis of balanced linear models using direct products of matrices Analyzes multiresponse linear models where several responses can be of interest Includes extensive use of SAS, MATLAB, and R throughout Contains over 400 examples and exercises to reinforce understanding along with select solutions Includes plentiful new illustrations depicting the importance of geometry as well as historical interludes Matrix Algebra Useful for Statistics, Second Edition is an ideal textbook for advanced undergraduate and first-year graduate level courses in statistics and other related disciplines. The book is also appropriate as a reference for independent readers who use statistics and wish to improve their knowledge of matrix algebra. THE LATE SHAYLE R. SEARLE, PHD, was professor emeritus of biometry at Cornell University. He was the author of Linear Models for Unbalanced Data and Linear Models and co-author of Generalized, Linear, and Mixed Models, Second Edition, Matrix Algebra for Applied Economics, and Variance Components, all published by Wiley. Dr. Searle received the Alexander von Humboldt Senior Scientist Award, and he was an honorary fellow of the Royal Society of New Zealand. ANDRÉ I. KHURI, PHD, is Professor Emeritus of Statistics at the University of Florida. He is the author of Advanced Calculus with Applications in Statistics, Second Edition and co-author of Statistical Tests for Mixed Linear Models, all published by Wiley. Dr. Khuri is a member of numerous academic associations, among them the American Statistical Association and the Institute of Mathematical Statistics.
Download or read book A Companion to Theoretical Econometrics written by Badi H. Baltagi and published by John Wiley & Sons. This book was released on 2008-04-15 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Companion to Theoretical Econometrics provides a comprehensive reference to the basics of econometrics. This companion focuses on the foundations of the field and at the same time integrates popular topics often encountered by practitioners. The chapters are written by international experts and provide up-to-date research in areas not usually covered by standard econometric texts. Focuses on the foundations of econometrics. Integrates real-world topics encountered by professionals and practitioners. Draws on up-to-date research in areas not covered by standard econometrics texts. Organized to provide clear, accessible information and point to further readings.
Download or read book Discrete Data Analysis with R written by Michael Friendly and published by CRC Press. This book was released on 2015-12-16 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Download or read book Contemporary Statistical Models for the Plant and Soil Sciences written by Oliver Schabenberger and published by CRC Press. This book was released on 2001-11-13 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite its many origins in agronomic problems, statistics today is often unrecognizable in this context. Numerous recent methodological approaches and advances originated in other subject-matter areas and agronomists frequently find it difficult to see their immediate relation to questions that their disciplines raise. On the other hand, statisticians often fail to recognize the riches of challenging data analytical problems contemporary plant and soil science provides. The first book to integrate modern statistics with crop, plant and soil science, Contemporary Statistical Models for the Plant and Soil Sciences bridges this gap. The breadth and depth of topics covered is unusual. Each of the main chapters could be a textbook in its own right on a particular class of data structures or models. The cogent presentation in one text allows research workers to apply modern statistical methods that otherwise are scattered across several specialized texts. The combination of theory and application orientation conveys ìwhyî a particular method works and ìhowî it is put in to practice. About the downloadable resources The accompanying downloadable resources are a key component of the book. For each of the main chapters additional sections of text are available that cover mathematical derivations, special topics, and supplementary applications. It supplies the data sets and SAS code for all applications and examples in the text, macros that the author developed, and SAS tutorials ranging from basic data manipulation to advanced programming techniques and publication quality graphics. Contemporary statistical models can not be appreciated to their full potential without a good understanding of theory. They also can not be applied to their full potential without the aid of statistical software. Contemporary Statistical Models for the Plant and Soil Science provides the essential mix of theory and applications of statistical methods pertinent to research in life sciences.
Download or read book SAS Communications written by SAS Institute and published by . This book was released on 1988 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Regression and ANOVA written by Keith E. Muller and published by Wiley-SAS. This book was released on 2003-06-03 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Muller and Fetterman (U. of N. Carolina, Chapel Hill) developed this text for use in "Intermediate Linear Models," a graduate level biostatistics class at UNC, covering basic theory, multiple regression, model building and evaluation, ANOVA, and universal tools. The text uses sets of real data, and contains almost no proofs. Ideal prerequisites for use include a matrix algebra class, an undergraduate introduction to mathematical statistics, basic programming skills in the statistical package used in the course (data input, data transformation, and analysis), and basic skills in linear models. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).
Download or read book Master Index to SAS System Documentation written by SAS Institute and published by . This book was released on 1987 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estatistica matematica; SAS; Master index.
Download or read book Applying Data Science written by Gerhard Svolba and published by SAS Institute. This book was released on 2017-03-29 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: See how data science can answer the questions your business faces! Applying Data Science: Business Case Studies Using SAS, by Gerhard Svolba, shows you the benefits of analytics, how to gain more insight into your data, and how to make better decisions. In eight entertaining and real-world case studies, Svolba combines data science and advanced analytics with business questions, illustrating them with data and SAS code. The case studies range from a variety of fields, including performing headcount survival analysis for employee retention, forecasting the demand for new projects, using Monte Carlo simulation to understand outcome distribution, among other topics. The data science methods covered include Kaplan-Meier estimates, Cox Proportional Hazard Regression, ARIMA models, Poisson regression, imputation of missing values, variable clustering, and much more! Written for business analysts, statisticians, data miners, data scientists, and SAS programmers, Applying Data Science bridges the gap between high-level, business-focused books that skimp on the details and technical books that only show SAS code with no business context.
Download or read book Design and Analysis of Experiments with R written by John Lawson and published by CRC Press. This book was released on 2014-12-17 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data,
Download or read book Paperbound Books in Print written by and published by . This book was released on 1991 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book SAS and R written by Ken Kleinman and published by CRC Press. This book was released on 2014-07-17 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.
Download or read book Practical Guide to Logistic Regression written by Joseph M. Hilbe and published by CRC Press. This book was released on 2016-04-05 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Guide to Logistic Regression covers the key points of the basic logistic regression model and illustrates how to use it properly to model a binary response variable. This powerful methodology can be used to analyze data from various fields, including medical and health outcomes research, business analytics and data science, ecology, fishe
Download or read book Statistical Programming in SAS written by A. John Bailer and published by CRC Press. This book was released on 2020-01-28 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Programming in SAS Second Edition provides a foundation for programming to implement statistical solutions using SAS, a system that has been used to solve data analytic problems for more than 40 years. The author includes motivating examples to inspire readers to generate programming solutions. Upper-level undergraduates, beginning graduate students, and professionals involved in generating programming solutions for data-analytic problems will benefit from this book. The ideal background for a reader is some background in regression modeling and introductory experience with computer programming. The coverage of statistical programming in the second edition includes Getting data into the SAS system, engineering new features, and formatting variables Writing readable and well-documented code Structuring, implementing, and debugging programs that are well documented Creating solutions to novel problems Combining data sources, extracting parts of data sets, and reshaping data sets as needed for other analyses Generating general solutions using macros Customizing output Producing insight-inspiring data visualizations Parsing, processing, and analyzing text Programming solutions using matrices and connecting to R Processing text Programming with matrices Connecting SAS with R Covering topics that are part of both base and certification exams.
Download or read book Subject Guide to Books in Print written by and published by . This book was released on 1997 with total page 3310 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The R Software written by Pierre Lafaye de Micheaux and published by Springer Science & Business. This book was released on 2014-05-13 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.
Download or read book Statistics in the Health Sciences written by Albert Vexler and published by CRC Press. This book was released on 2018-01-19 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This very informative book introduces classical and novel statistical methods that can be used by theoretical and applied biostatisticians to develop efficient solutions for real-world problems encountered in clinical trials and epidemiological studies. The authors provide a detailed discussion of methodological and applied issues in parametric, semi-parametric and nonparametric approaches, including computationally extensive data-driven techniques, such as empirical likelihood, sequential procedures, and bootstrap methods. Many of these techniques are implemented using popular software such as R and SAS."— Vlad Dragalin, Professor, Johnson and Johnson, Spring House, PA "It is always a pleasure to come across a new book that covers nearly all facets of a branch of science one thought was so broad, so diverse, and so dynamic that no single book could possibly hope to capture all of the fundamentals as well as directions of the field. The topics within the book’s purview—fundamentals of measure-theoretic probability; parametric and non-parametric statistical inference; central limit theorems; basics of martingale theory; Monte Carlo methods; sequential analysis; sequential change-point detection—are all covered with inspiring clarity and precision. The authors are also very thorough and avail themselves of the most recent scholarship. They provide a detailed account of the state of the art, and bring together results that were previously scattered across disparate disciplines. This makes the book more than just a textbook: it is a panoramic companion to the field of Biostatistics. The book is self-contained, and the concise but careful exposition of material makes it accessible to a wide audience. This is appealing to graduate students interested in getting into the field, and also to professors looking to design a course on the subject." — Aleksey S. Polunchenko, Department of Mathematical Sciences, State University of New York at Binghamton This book should be appropriate for use both as a text and as a reference. This book delivers a "ready-to-go" well-structured product to be employed in developing advanced courses. In this book the readers can find classical and new theoretical methods, open problems and new procedures. The book presents biostatistical results that are novel to the current set of books on the market and results that are even new with respect to the modern scientific literature. Several of these results can be found only in this book.