Download or read book Dynamic Term Structure Modeling written by Sanjay K. Nawalkha and published by John Wiley & Sons. This book was released on 2007-05-23 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Dynamic Term Structure Modeling "This book offers the most comprehensive coverage of term-structure models I have seen so far, encompassing equilibrium and no-arbitrage models in a new framework, along with the major solution techniques using trees, PDE methods, Fourier methods, and approximations. It is an essential reference for academics and practitioners alike." --Sanjiv Ranjan Das Professor of Finance, Santa Clara University, California, coeditor, Journal of Derivatives "Bravo! This is an exhaustive analysis of the yield curve dynamics. It is clear, pedagogically impressive, well presented, and to the point." --Nassim Nicholas Taleb author, Dynamic Hedging and The Black Swan "Nawalkha, Beliaeva, and Soto have put together a comprehensive, up-to-date textbook on modern dynamic term structure modeling. It is both accessible and rigorous and should be of tremendous interest to anyone who wants to learn about state-of-the-art fixed income modeling. It provides many numerical examples that will be valuable to readers interested in the practical implementations of these models." --Pierre Collin-Dufresne Associate Professor of Finance, UC Berkeley "The book provides a comprehensive description of the continuous time interest rate models. It serves an important part of the trilogy, useful for financial engineers to grasp the theoretical underpinnings and the practical implementation." --Thomas S. Y. Ho, PHD President, Thomas Ho Company, Ltd, coauthor, The Oxford Guide to Financial Modeling
Download or read book Term Structure Models written by Damir Filipovic and published by Springer Science & Business Media. This book was released on 2009-07-28 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Changing interest rates constitute one of the major risk sources for banks, insurance companies, and other financial institutions. Modeling the term-structure movements of interest rates is a challenging task. This volume gives an introduction to the mathematics of term-structure models in continuous time. It includes practical aspects for fixed-income markets such as day-count conventions, duration of coupon-paying bonds and yield curve construction; arbitrage theory; short-rate models; the Heath-Jarrow-Morton methodology; consistent term-structure parametrizations; affine diffusion processes and option pricing with Fourier transform; LIBOR market models; and credit risk. The focus is on a mathematically straightforward but rigorous development of the theory. Students, researchers and practitioners will find this volume very useful. Each chapter ends with a set of exercises, that provides source for homework and exam questions. Readers are expected to be familiar with elementary Itô calculus, basic probability theory, and real and complex analysis.
Download or read book Handbook of Quantitative Finance and Risk Management written by Cheng-Few Lee and published by Springer Science & Business Media. This book was released on 2010-06-14 with total page 1700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative finance is a combination of economics, accounting, statistics, econometrics, mathematics, stochastic process, and computer science and technology. Increasingly, the tools of financial analysis are being applied to assess, monitor, and mitigate risk, especially in the context of globalization, market volatility, and economic crisis. This two-volume handbook, comprised of over 100 chapters, is the most comprehensive resource in the field to date, integrating the most current theory, methodology, policy, and practical applications. Showcasing contributions from an international array of experts, the Handbook of Quantitative Finance and Risk Management is unparalleled in the breadth and depth of its coverage. Volume 1 presents an overview of quantitative finance and risk management research, covering the essential theories, policies, and empirical methodologies used in the field. Chapters provide in-depth discussion of portfolio theory and investment analysis. Volume 2 covers options and option pricing theory and risk management. Volume 3 presents a wide variety of models and analytical tools. Throughout, the handbook offers illustrative case examples, worked equations, and extensive references; additional features include chapter abstracts, keywords, and author and subject indices. From "arbitrage" to "yield spreads," the Handbook of Quantitative Finance and Risk Management will serve as an essential resource for academics, educators, students, policymakers, and practitioners.
Download or read book Empirical Dynamic Asset Pricing written by Kenneth J. Singleton and published by Princeton University Press. This book was released on 2009-12-13 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the leading experts in the field, this book focuses on the interplay between model specification, data collection, and econometric testing of dynamic asset pricing models. The first several chapters provide an in-depth treatment of the econometric methods used in analyzing financial time-series models. The remainder explores the goodness-of-fit of preference-based and no-arbitrage models of equity returns and the term structure of interest rates; equity and fixed-income derivatives prices; and the prices of defaultable securities. Singleton addresses the restrictions on the joint distributions of asset returns and other economic variables implied by dynamic asset pricing models, as well as the interplay between model formulation and the choice of econometric estimation strategy. For each pricing problem, he provides a comprehensive overview of the empirical evidence on goodness-of-fit, with tables and graphs that facilitate critical assessment of the current state of the relevant literatures. As an added feature, Singleton includes throughout the book interesting tidbits of new research. These range from empirical results (not reported elsewhere, or updated from Singleton's previous papers) to new observations about model specification and new econometric methods for testing models. Clear and comprehensive, the book will appeal to researchers at financial institutions as well as advanced students of economics and finance, mathematics, and science.
Download or read book Handbook of Research Methods and Applications in Empirical Finance written by Adrian R. Bell and published by Edward Elgar Publishing. This book was released on 2013-01-01 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This impressive Handbook presents the quantitative techniques that are commonly employed in empirical finance research together with real-world, state-of-the-art research examples. Written by international experts in their field, the unique approach describes a question or issue in finance and then demonstrates the methodologies that may be used to solve it. All of the techniques described are used to address real problems rather than being presented for their own sake, and the areas of application have been carefully selected so that a broad range of methodological approaches can be covered. The Handbook is aimed primarily at doctoral researchers and academics who are engaged in conducting original empirical research in finance. In addition, the book will be useful to researchers in the financial markets and also advanced Masters-level students who are writing dissertations.
Download or read book A Macroeconomic Approach to the Term Premium written by Emanuel Kopp and published by International Monetary Fund. This book was released on 2018-06-15 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, term premia have been very low and sometimes even negative. Now, with the United States economy growing above potential, inflationary pressures are on the rise. Term premia are very sensitive to the expected future path of growth, inflation, and monetary policy, and an inflation surprise could require monetary policy to tighten faster than anticipated, inducing to a sudden decompression of term and other risk premia, thus tightening financial conditions. This paper proposes a semi-structural dynamic term structure model augmented with macroeconomic factors to include cyclical dynamics with a focus on medium- to long-run forecasts. Our results clearly show that a macroeconomic approach is warranted: While term premium estimates are in line with those from other studies, we provide (i) plausible, stable estimates of expected long-term interest rates and (ii) forecasts of short- and long-term interest rates as well as cyclical macroeconomic variables that are stunningly close to those generated from large-scale macroeconomic models.
Download or read book Yield Curve Modeling and Forecasting written by Francis X. Diebold and published by Princeton University Press. This book was released on 2013-01-15 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the dynamic evolution of the yield curve is critical to many financial tasks, including pricing financial assets and their derivatives, managing financial risk, allocating portfolios, structuring fiscal debt, conducting monetary policy, and valuing capital goods. Unfortunately, most yield curve models tend to be theoretically rigorous but empirically disappointing, or empirically successful but theoretically lacking. In this book, Francis Diebold and Glenn Rudebusch propose two extensions of the classic yield curve model of Nelson and Siegel that are both theoretically rigorous and empirically successful. The first extension is the dynamic Nelson-Siegel model (DNS), while the second takes this dynamic version and makes it arbitrage-free (AFNS). Diebold and Rudebusch show how these two models are just slightly different implementations of a single unified approach to dynamic yield curve modeling and forecasting. They emphasize both descriptive and efficient-markets aspects, they pay special attention to the links between the yield curve and macroeconomic fundamentals, and they show why DNS and AFNS are likely to remain of lasting appeal even as alternative arbitrage-free models are developed. Based on the Econometric and Tinbergen Institutes Lectures, Yield Curve Modeling and Forecasting contains essential tools with enhanced utility for academics, central banks, governments, and industry.
Download or read book The Term Structure of Interest Rates written by David Meiselman and published by . This book was released on 1962 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Financial Derivatives written by Jamil Baz and published by Cambridge University Press. This book was released on 2004-01-12 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Download or read book International Convergence of Capital Measurement and Capital Standards written by and published by Lulu.com. This book was released on 2004 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Yield Curve Modeling and Forecasting written by Francis X. Diebold and published by Princeton University Press. This book was released on 2013-01-15 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the dynamic evolution of the yield curve is critical to many financial tasks, including pricing financial assets and their derivatives, managing financial risk, allocating portfolios, structuring fiscal debt, conducting monetary policy, and valuing capital goods. Unfortunately, most yield curve models tend to be theoretically rigorous but empirically disappointing, or empirically successful but theoretically lacking. In this book, Francis Diebold and Glenn Rudebusch propose two extensions of the classic yield curve model of Nelson and Siegel that are both theoretically rigorous and empirically successful. The first extension is the dynamic Nelson-Siegel model (DNS), while the second takes this dynamic version and makes it arbitrage-free (AFNS). Diebold and Rudebusch show how these two models are just slightly different implementations of a single unified approach to dynamic yield curve modeling and forecasting. They emphasize both descriptive and efficient-markets aspects, they pay special attention to the links between the yield curve and macroeconomic fundamentals, and they show why DNS and AFNS are likely to remain of lasting appeal even as alternative arbitrage-free models are developed. Based on the Econometric and Tinbergen Institutes Lectures, Yield Curve Modeling and Forecasting contains essential tools with enhanced utility for academics, central banks, governments, and industry.
Download or read book Interest Rate Models Theory and Practice written by Damiano Brigo and published by Springer Science & Business Media. This book was released on 2007-09-26 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2nd edition of this successful book has several new features. The calibration discussion of the basic LIBOR market model has been enriched considerably, with an analysis of the impact of the swaptions interpolation technique and of the exogenous instantaneous correlation on the calibration outputs. A discussion of historical estimation of the instantaneous correlation matrix and of rank reduction has been added, and a LIBOR-model consistent swaption-volatility interpolation technique has been introduced. The old sections devoted to the smile issue in the LIBOR market model have been enlarged into a new chapter. New sections on local-volatility dynamics, and on stochastic volatility models have been added, with a thorough treatment of the recently developed uncertain-volatility approach. Examples of calibrations to real market data are now considered. The fast-growing interest for hybrid products has led to a new chapter. A special focus here is devoted to the pricing of inflation-linked derivatives. The three final new chapters of this second edition are devoted to credit. Since Credit Derivatives are increasingly fundamental, and since in the reduced-form modeling framework much of the technique involved is analogous to interest-rate modeling, Credit Derivatives -- mostly Credit Default Swaps (CDS), CDS Options and Constant Maturity CDS - are discussed, building on the basic short rate-models and market models introduced earlier for the default-free market. Counterparty risk in interest rate payoff valuation is also considered, motivated by the recent Basel II framework developments.
Download or read book Numerical Methods for Finance written by John Miller and published by CRC Press. This book was released on 2007-09-21 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring international contributors from both industry and academia, Numerical Methods for Finance explores new and relevant numerical methods for the solution of practical problems in finance. It is one of the few books entirely devoted to numerical methods as applied to the financial field. Presenting state-of-the-art methods in this area
Download or read book Fixed Income Modelling written by Claus Munk and published by Oxford University Press. This book was released on 2011-06-30 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: A large number of securities related to various interest rates are traded in financial markets. Traders and analysts in the financial industry apply models based on economics, mathematics and probability theory to compute reasonable prices and risk measures for these securities. This book offers a unified presentation of such models and securities.
Download or read book Interest Rate Risk Modeling written by Sanjay K. Nawalkha and published by John Wiley & Sons. This book was released on 2005-05-31 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive guide to fixed income valuation and risk analysis The Trilogy in Fixed Income Valuation and Risk Analysis comprehensively covers the most definitive work on interest rate risk, term structure analysis, and credit risk. The first book on interest rate risk modeling examines virtually every well-known IRR model used for pricing and risk analysis of various fixed income securities and their derivatives. The companion CD-ROM contain numerous formulas and programming tools that allow readers to better model risk and value fixed income securities. This comprehensive resource provides readers with the hands-on information and software needed to succeed in this financial arena.
Download or read book Optimization Based Models for Measuring and Hedging Risk in Fixed Income Markets written by Johan Hagenbjörk and published by Linköping University Electronic Press. This book was released on 2019-12-09 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.
Download or read book A Practitioner s Guide to Discrete Time Yield Curve Modelling written by Ken Nyholm and published by Cambridge University Press. This book was released on 2021-01-07 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Element is intended for students and practitioners as a gentle and intuitive introduction to the field of discrete-time yield curve modelling. I strive to be as comprehensive as possible, while still adhering to the overall premise of putting a strong focus on practical applications. In addition to a thorough description of the Nelson-Siegel family of model, the Element contains a section on the intuitive relationship between P and Q measures, one on how the structure of a Nelson-Siegel model can be retained in the arbitrage-free framework, and a dedicated section that provides a detailed explanation for the Joslin, Singleton, and Zhu (2011) model.