EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Proposal for a 1 GeV Plasma wakefield Acceleration Experiment at SLAC

Download or read book A Proposal for a 1 GeV Plasma wakefield Acceleration Experiment at SLAC written by and published by . This book was released on 1997 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: A plasma-based wakefield acceleration (PWFA) experiment is proposed that will accelerate parts of an SLC bunch by up to 1 GeV/m over a length of 1 m. A single SLC bunch is used to both induce wakefields in the one meter long plasma and to witness the resulting beam acceleration. The proposed experiment will explore and further develop the techniques that are needed to apply high-gradient plasma wakefield acceleration to large scale accelerators. The one meter length of the experiment is about two orders of magnitude larger than other high-gradient PWFA experiments and the 1 GeV/m accelerating gradient is roughly ten times larger than that achieved with conventional metallic structures. Using existing SLAC facilities, the proposed experiment will allow the study of high-gradient acceleration at the forefront of advanced accelerator research.

Book Proposal for a One GeV Plasma Wakefield Acceleration Experiment at SLAC

Download or read book Proposal for a One GeV Plasma Wakefield Acceleration Experiment at SLAC written by and published by . This book was released on 1998 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: A plasma-based wakefield acceleration experiment E-157 has been approved at SLAC to study acceleration of parts of an SLC bunch by up to 1 GeV/m over a length of 1 m. A single SLC bunch is used to both induce wakefields in the one meter long plasma and to witness the resulting beam acceleration. The experiment will explore and further development the techniques that are needed to apply high-gradient plasma wakefield acceleration to large scale accelerators. The one meter length of the experiment is about two orders of magnitude larger than other high gradient plasma wakefield acceleration experiments and the 1 GeV/m accelerating gradient is roughly ten times larger than that achieved with conventional metallic structures. Using existing SLAC facilities, the experiment will study high gradient acceleration at the forefront of advanced accelerator research.

Book Progress Toward E 157

Download or read book Progress Toward E 157 written by and published by . This book was released on 1999 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: A plasma based wakefield acceleration (PWFA) experiment, scheduled to run this summer, will accelerate parts of a 28.5 GeV bunch from the SLAC linac by up to 1 GeV over a length of 1 meter. A single 28.5 GeV bunch will both induce the wakefields in the one meter long plasma and witness the resulting acceleration fields. The experiment will explore and further develop the techniques that are needed to apply high-gradient PWFA to large scale accelerators. This paper summarizes the goals of the first round of experiments as well as the status of the individual components: construction and diagnosis of the homogeneous lithium oven plasma source and associated ionization laser, commissioning of the electron beam, simulated performance of the electron beam energy measurement, and first PIC simulations of the full meter long experiment.

Book IMPROVEMENTS FOR THE THIRD GENERATION PLASMA WAKEFIELD EXPERIMENT E 164 AT SLAC

Download or read book IMPROVEMENTS FOR THE THIRD GENERATION PLASMA WAKEFIELD EXPERIMENT E 164 AT SLAC written by and published by . This book was released on 2004 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The E-164 experiment at the Stanford Linear Accelerator Center is the third in a series investigating Plasma Wakefield Acceleration where the wake is driven by electron bunches. A collaboration between SLAC, UCLA and USC, E-164 has up to 2 x 101° electrons at 28.5 GeV in 100 micron long bunches. These bunches enter a 30cm long Lithium plasma with density of 6 x 1015 electrons/cm3, where the transfer of energy from the head of the bunch to the tail takes place. In addition to acceleration, strong focusing, refraction of the electron beam and ''betatron X-ray'' production are all investigated. E-164 builds on related prior experiments, and its apparatus has evolved considerably. A third Optical Transition Radiator has been added for real time Twiss Parameter measurements which include the effects of scattering. The plasma cell is moved to the focus of the Final Focus Test Beam facility in order to increase bunch electron density. Spectrometry is extended with an upstream chicane in a dispersive region to produce synchrotron X-rays. Performance of these improvements and status of the experiment are discussed.

Book Challenges and Goals for Accelerators in the XXI Century

Download or read book Challenges and Goals for Accelerators in the XXI Century written by Oliver Brning and published by World Scientific. This book was released on 2015 with total page 855 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades."--Provided by publisher.

Book Acceleration and Focusing of Electrons and Positrons Using a 30 GeV Drive Beam

Download or read book Acceleration and Focusing of Electrons and Positrons Using a 30 GeV Drive Beam written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: A series of plasma wakefield acceleration (PWFA) experiments are being conducted with a 30 GeV drive beam from the Stanford Linear Accelerator Center (SLAC). These experiments continue to address the application of meter-scale plasmas to focus and accelerate electrons and positrons in the context of future applications to high-energy accelerators.

Book An Ultra High Gradient Cherenkov Wakefield Acceleration Experiment at SLAC FFTB

Download or read book An Ultra High Gradient Cherenkov Wakefield Acceleration Experiment at SLAC FFTB written by M. J. Hogan and published by . This book was released on 2005 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: The creation of ultra-high current, ultra-short pulse beams Q=3 nC, {sigma}{sub z} = 20{micro}m at the SLAC FFTB has opened the way for very high gradient plasma wakefield acceleration experiments. We study here the use of these beams in a proposed Cherenkov wakefield experiment, where one may excite electromagnetic wakes in a simple dielectric tube with inner diameter of few 100 microns that exceed the GV/m level. We discuss the scaling of the fields with design geometric design parameters, and choice of dielectric. We also examine measurable aspects of the experiment, such as the total coherent Cerenkov radiation energy one may collect, and the expected aspects of dielectric breakdown at high fields.

Book Recent Advances in Plasma Acceleration

Download or read book Recent Advances in Plasma Acceleration written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of ≈52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

Book Studies of Proton Driven Plasma Wakefield Acceleration

Download or read book Studies of Proton Driven Plasma Wakefield Acceleration written by Yangmei Li and published by Springer Nature. This book was released on 2020-07-15 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on a cutting-edge area of research, which is aligned with CERN's mainstream research, the "AWAKE" project, dedicated to proving the capability of accelerating particles to the energy frontier by the high energy proton beam. The author participated in this project and has advanced the plasma wakefield theory and modelling significantly, especially concerning future plasma acceleration based collider design. The thesis addresses electron beam acceleration to high energy whilst preserving its high quality driven by a single short proton bunch in hollow plasma. It also demonstrates stable deceleration of multiple proton bunches in a nonlinear regime with strong resonant wakefield excitation in hollow plasma, and generation of high energy and high quality electron or positron bunches. Further work includes the assessment of transverse instabilities induced by misaligned beams in hollow plasma and enhancement of the wakefield amplitude driven by a self-modulated long proton bunch with a tapered plasma. This work has major potential to impact the next generation of linear colliders and also in the long-term may help develop compact accelerators for use in industrial and medical facilities.

Book Challenges And Goals For Accelerators In The Xxi Century

Download or read book Challenges And Goals For Accelerators In The Xxi Century written by Stephen Myers and published by World Scientific. This book was released on 2016-02-26 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades.

Book Plasma Wakefield Acceleration and FACET   Facilities for Accelerator Science and Experimental Test Beams at SLAC

Download or read book Plasma Wakefield Acceleration and FACET Facilities for Accelerator Science and Experimental Test Beams at SLAC written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators. FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.

Book Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

Download or read book Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, [epsilon]{sub N, x}/I{sub t}, below the level of 0.2 [mu]m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of [epsilon]{sub N, x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few [mu]m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron bunches. Chapters four and five present the experimental diagnostics and measurements for the trapped electrons. Next, the sixth chapter introduces suggestions for future trapped electron experiments. Then, Chapter seven contains the conclusions. In addition, there is an appendix chapter that covers a topic which is extraneous to electron trapping, but relevant to the PWFA. This chapter explores the feasibility of one idea for the production of a hollow channel plasma, which if produced could solve some of the remaining issues for a plasma-based collider.

Book Energy Doubling of 42 GeV Electrons in a Meter scale Plasma Wakefield Accelerator

Download or read book Energy Doubling of 42 GeV Electrons in a Meter scale Plasma Wakefield Accelerator written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of (almost equal to) 52GV m−1. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

Book Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator

Download or read book Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator written by and published by . This book was released on 2008 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch lengths were varied systematically at constant charge. The effort to extract a measurement of the decelerating wake from the maximum energy loss of the electron beam is discussed.

Book E 157

    Book Details:
  • Author :
  • Publisher :
  • Release : 2000
  • ISBN :
  • Pages : 5 pages

Download or read book E 157 written by and published by . This book was released on 2000 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The E-157 plasma wakefield experiment addresses issues relevant to a meter long plasma accelerator module. In particular, a 1.4 m long plasma source has been developed for the experiment. The transverse dynamics of the beam in the plasma is studied: multiple betatron oscillations of the beam envelope, flipping of the beam tail, stability against the hose instability, emission of synchrotron radiation by the beam in the plasma. The bending of the 28.5 GeV beam at the plasma/vapor interface is observed for the first time. The longitudinal dynamics of the beam, i.e. the energy loss and gain by the electrons in the wake, is strongly affected by the oscillation of the beam tail instability.

Book Energy and Water Development Appropriations for 2008  Dept  of Energy FY 2008 budget justifications  science  nuclear waste disposal  defense nuclear waste disposal

Download or read book Energy and Water Development Appropriations for 2008 Dept of Energy FY 2008 budget justifications science nuclear waste disposal defense nuclear waste disposal written by United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development and published by . This book was released on 2007 with total page 1716 pages. Available in PDF, EPUB and Kindle. Book excerpt: