EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2007 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Recent Developments in the Solution of Nonlinear Differential Equations

Download or read book Recent Developments in the Solution of Nonlinear Differential Equations written by Bruno Carpentieri and published by BoD – Books on Demand. This book was released on 2021-09-08 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear differential equations are ubiquitous in computational science and engineering modeling, fluid dynamics, finance, and quantum mechanics, among other areas. Nowadays, solving challenging problems in an industrial setting requires a continuous interplay between the theory of such systems and the development and use of sophisticated computational methods that can guide and support the theoretical findings via practical computer simulations. Owing to the impressive development in computer technology and the introduction of fast numerical methods with reduced algorithmic and memory complexity, rigorous solutions in many applications have become possible. This book collects research papers from leading world experts in the field, highlighting ongoing trends, progress, and open problems in this critically important area of mathematics.

Book Theory of Besov Spaces

Download or read book Theory of Besov Spaces written by Yoshihiro Sawano and published by Springer. This book was released on 2018-11-04 with total page 964 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.

Book Topics in Functional Analysis and Applications

Download or read book Topics in Functional Analysis and Applications written by S. KESAVAN and published by . This book was released on 2020-11 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Key Features:Basic knowledge in functional analysis is a pre-requisite. Illustrations via partial differential equations of physics provided. Exercises given in each chapter to augment concepts and theorems.About the Book:The book, written to give a fairly comprehensive treatment of the techniques from Functional Analysis used in the modern theory of Partial Differential Equations, is now in its third edition. The original structure of the book has been retained but each chapter has been revamped. Proofs of several theorems have been either simplified or elaborated in order to achieve greater clarity. It is hoped that this version is even more user-friendly than before. In the chapter on Distributions, some additional results, with proof, have been presented. The section on Convolution of Functions has been rewritten. In the chapter on Sobolev Spaces, the section containing Stampacchia's theorem on composition of functions has been reorganized. Some additional results on Eigenvalue problems are presented. The material in the text is supplemented by four appendices and updated bibliography at the end.

Book Function Spaces  Differential Operators and Nonlinear Analysis

Download or read book Function Spaces Differential Operators and Nonlinear Analysis written by Dorothee Haroske and published by Springer Science & Business Media. This book was released on 2003-02-24 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to our teacher and friend Hans Triebel. The core of the book is based on lectures given at the International Conference "Function Spaces, Differential Operators and Nonlinear Analysis" (FSDONA--01) held in Teistungen, Thuringia / Germany, from June 28 to July 4,2001, in honour of his 65th birthday. This was the fifth in a series of meetings organised under the same name by scientists from Finland (Helsinki, Oulu) , the Czech Republic (Prague, Plzen) and Germany (Jena) promoting the collaboration of specialists in East and West, working in these fields. This conference was a very special event because it celebrated Hans Triebel's extraordinary impact on mathematical analysis. The development of the mod ern theory of function spaces in the last 30 years and its application to various branches in both pure and applied mathematics is deeply influenced by his lasting contributions. In a series of books Hans Triebel has given systematic treatments of the theory of function spaces from different points of view, thus revealing its interdependence with interpolation theory, harmonic analysis, partial differential equations, nonlinear operators, entropy, spectral theory and, most recently, anal ysis on fractals. The presented collection of papers is a tribute to Hans Triebel's distinguished work. The book is subdivided into three parts: • Part I contains the two invited lectures by O.V. Besov (Moscow) and D.E. Edmunds (Sussex) having a survey character and honouring Hans Triebel's contributions.

Book Numerical Solution of the Schr  dinger Equation

Download or read book Numerical Solution of the Schr dinger Equation written by Theodore E. Simos and published by World Scientific Publishing Company. This book was released on 2009 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title is devoted to the numerical solution of general problems with periodic and oscillating solutions.

Book The Mathematics of Voting and Elections  A Hands On Approach

Download or read book The Mathematics of Voting and Elections A Hands On Approach written by Jonathan K. Hodge and published by American Mathematical Soc.. This book was released on 2018-10-01 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematics of Voting and Elections: A Hands-On Approach, Second Edition, is an inquiry-based approach to the mathematics of politics and social choice. The aim of the book is to give readers who might not normally choose to engage with mathematics recreationally the chance to discover some interesting mathematical ideas from within a familiar context, and to see the applicability of mathematics to real-world situations. Through this process, readers should improve their critical thinking and problem solving skills, as well as broaden their views of what mathematics really is and how it can be used in unexpected ways. The book was written specifically for non-mathematical audiences and requires virtually no mathematical prerequisites beyond basic arithmetic. At the same time, the questions included are designed to challenge both mathematical and non-mathematical audiences alike. More than giving the right answers, this book asks the right questions. The book is fun to read, with examples that are not just thought-provoking, but also entertaining. It is written in a style that is casual without being condescending. But the discovery-based approach of the book also forces readers to play an active role in their learning, which should lead to a sense of ownership of the main ideas in the book. And while the book provides answers to some of the important questions in the field of mathematical voting theory, it also leads readers to discover new questions and ways to approach them. In addition to making small improvements in all the chapters, this second edition contains several new chapters. Of particular interest might be Chapter 12 which covers a host of topics related to gerrymandering.

Book Random Schr  dinger Operators

Download or read book Random Schr dinger Operators written by Margherita Disertori and published by SMF. This book was released on 2008 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last thirty years, random Schrodinger operators, which originated in condensed matter physics, have been studied intensively and very productively. The theory is at the crossroads of a number of mathematical fields: the theory of operators, partial differential equations, the theory of probabilities, in particular the study of stochastic processes and that of random walks and Brownian motion in a random environment. This monograph aims to give the reader a panorama of the subject, from the now-classic foundations to very recent developments.

Book Variational Analysis and Applications

Download or read book Variational Analysis and Applications written by F. Giannessi and published by Springer Science & Business Media. This book was released on 2005-06-14 with total page 1348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses a new discipline, variational analysis, which contains the calculus of variations, differential calculus, optimization, and variational inequalities. To such classic branches of mathematics, variational analysis provides a uniform theoretical base that represents a powerful tool for the applications. The contributors are among the best experts in the field. Audience The target audience of this book includes scholars in mathematics (especially those in mathematical analysis), mathematical physics and applied mathematics, calculus of variations, optimization and operations research, industrial mathematics, structural engineering, and statistics and economics.

Book Orlicz Spaces and Generalized Orlicz Spaces

Download or read book Orlicz Spaces and Generalized Orlicz Spaces written by Petteri Harjulehto and published by Springer. This book was released on 2019-05-07 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic treatment of generalized Orlicz spaces (also known as Musielak–Orlicz spaces) with minimal assumptions on the generating Φ-function. It introduces and develops a technique centered on the use of equivalent Φ-functions. Results from classical functional analysis are presented in detail and new material is included on harmonic analysis. Extrapolation is used to prove, for example, the boundedness of Calderón–Zygmund operators. Finally, central results are provided for Sobolev spaces, including Poincaré and Sobolev–Poincaré inequalities in norm and modular forms. Primarily aimed at researchers and PhD students interested in Orlicz spaces or generalized Orlicz spaces, this book can be used as a basis for advanced graduate courses in analysis.

Book Sobolev Spaces

    Book Details:
  • Author : Vladimir Maz'ya
  • Publisher : Springer Science & Business Media
  • Release : 2011-02-11
  • ISBN : 3642155642
  • Pages : 882 pages

Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2011-02-11 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.

Book Aspects of Quantum Theory

    Book Details:
  • Author : Paul Adrien Maurice Dirac
  • Publisher : Cambridge University Press
  • Release : 1972-11-02
  • ISBN : 0521086000
  • Pages : 290 pages

Download or read book Aspects of Quantum Theory written by Paul Adrien Maurice Dirac and published by Cambridge University Press. This book was released on 1972-11-02 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: These twelve articles discuss aspects of quantum mechanics that owe their origin to the work of P. A. M. Dirac.

Book Elliptic Boundary Value Problems

    Book Details:
  • Author : V. G. Maz'Ya
  • Publisher : American Mathematical Soc.
  • Release : 1984
  • ISBN : 9780821895610
  • Pages : 276 pages

Download or read book Elliptic Boundary Value Problems written by V. G. Maz'Ya and published by American Mathematical Soc.. This book was released on 1984 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains papers that have been selected, translated, and edited from publications not otherwise translated into English under the auspices of the AMS-ASL-IMS Committee on Translations from Russian and Other Foreign Languages.

Book Function Spaces and Potential Theory

Download or read book Function Spaces and Potential Theory written by David R. Adams and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: "..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society

Book Sparse Solutions of Underdetermined Linear Systems and Their Applications

Download or read book Sparse Solutions of Underdetermined Linear Systems and Their Applications written by Ming-Jun Lai and published by SIAM. This book was released on 2021-06-25 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents a special solution to underdetermined linear systems where the number of nonzero entries in the solution is very small compared to the total number of entries. This is called a sparse solution. Since underdetermined linear systems can be very different, the authors explain how to compute a sparse solution using many approaches. Sparse Solutions of Underdetermined Linear Systems and Their Applications contains 64 algorithms for finding sparse solutions of underdetermined linear systems and their applications for matrix completion, graph clustering, and phase retrieval and provides a detailed explanation of these algorithms including derivations and convergence analysis. Exercises for each chapter help readers understand the material. This textbook is appropriate for graduate students in math and applied math, computer science, statistics, data science, and engineering. Advisors and postdoctoral scholars will also find the book interesting and useful.

Book Mathematical Analysis tools for engineering

Download or read book Mathematical Analysis tools for engineering written by Franco Tomarelli and published by Società Editrice Esculapio. This book was released on 2019-09-18 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the study of ordinary differential equations and partial differential equations, ranging from elementary techniques to advanced tools. The presentation focusses on initial value problems, boundary value problems, equations with delayed argument and analysis of periodic solutions: main goal is the analysis of diffusion equation, wave equation Laplace equation and signals. The study of relevant examples of differential models highlights the notion of well-posed problem. An expanded tutorial chapter collects the topics from basic undergraduate calculus that are used in subsequent chapters. A wide exposition concerning classical methods for solving problems related to differential equations is available: mainly separation of variables and Fourier series, with basic worked exercises. A whole chapter deals with the analytic functions of complex variable. An introduction to function spaces, distributions and basic notions of functional analysis is present. Several chapters are devoted to Fourier and Laplace transforms methods to solve boundary value problems and initial value problems for differential equations. Tools for the analysis appear gradually: first in function spaces, then in the more general framework of distributions, where a powerful arsenal of techniques allows dealing with impulsive signals and singularities in both data and solutions of differential problems.

Book Oblique Derivative Problems for Elliptic Equations

Download or read book Oblique Derivative Problems for Elliptic Equations written by Gary M. Lieberman and published by World Scientific. This book was released on 2013 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an up-to-date exposition on the theory of oblique derivative problems for elliptic equations. The modern analysis of shock reflection was made possible by the theory of oblique derivative problems developed by the author. Such problems also arise in many other physical situations such as the shape of a capillary surface and problems of optimal transportation. The author begins the book with basic results for linear oblique derivative problems and work through the theory for quasilinear and nonlinear problems. The final chapter discusses some of the applications. In addition, notes to each chapter give a history of the topics in that chapter and suggestions for further reading.