EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Aerodynamic Shape Optimization Using Control Theory

Download or read book Aerodynamic Shape Optimization Using Control Theory written by James John Reuther and published by . This book was released on 1996 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "Aerodynamic shape design has long persisted as a difficult scientific challenge due [sic] its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then [sic] by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions."

Book The Variational Method for Aerodynamic Optimization Using the Navier Stokes Equations

Download or read book The Variational Method for Aerodynamic Optimization Using the Navier Stokes Equations written by and published by . This book was released on 1997 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes the formulation of an aerodynamic shape design methodology using a compressible viscous flow model based on the Reynolds Averaged Navier Stokes equations. The aerodynamic shape is described by a set of geometrical design variables. The design problem is formulated as an optimization problem stated in terms of an aerodynamic objective functional which has to be minimized. The design scheme employs a gradient based optimization algorithm in order to obtain the optimum values of the design variables. The gradient of the aerodynamic functional with respect to the design variables is computed by means of the variational method, which requires the solution of an adjoint problem. The formulation of the adjoint problem is described which leads to a set of adjoint equations and boundary conditions. Using the flow variables and the adjoint variables, an expression for the gradient has been constructed. Computational results are presented for an inverse problem of an airfoil. It will be shown that, starting from an initial geometry of the NACA 0012 airfoil, the target pressure distribution and geometry of a best fit of the RAE 2822 airfoil in a transonic flow condition has been reconstructed successfully.

Book Large scale shape optimization

Download or read book Large scale shape optimization written by Carlos E. Orozco and published by . This book was released on 1993 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Methods for Aerodynamic Shape Optimization

Download or read book Numerical Methods for Aerodynamic Shape Optimization written by Olivier Amoignon and published by . This book was released on 2005 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Recent Development of Aerodynamic Design Methodologies

Download or read book Recent Development of Aerodynamic Design Methodologies written by Kozo Fujii and published by Vieweg+Teubner Verlag. This book was released on 2013-11-13 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics (CFD) has made remarkable progress in the last two decades and is becoming an important, if not inevitable, analytical tool for both fundamental and practical fluid dynamics research. The analysis of flow fields is important in the sense that it improves the researcher's understanding of the flow features. CFD analysis also indirectly helps the design of new aircraft and/or spacecraft. However, design methodologies are the real need for the development of aircraft or spacecraft. They directly contribute to the design process and can significantly shorten the design cycle. Although quite a few publications have been written on this subject, most of the methods proposed were not used in practice in the past due to an immature research level and restrictions due to the inadequate computing capabilities. With the progress of high-speed computers, the time has come for such methods to be used practically. There is strong evidence of a growing interest in the development and use of aerodynamic inverse design and optimization techniques. This is true, not only for aerospace industries, but also for any industries requiring fluid dynamic design. This clearly shows the matured engineering need for optimum aerodynamic shape design methodologies. Therefore, it seems timely to publish a book in which eminent researchers in this area can elaborate on their research efforts and discuss it in conjunction with other efforts.

Book Aerodynamic Shape Optimization of Complex Aircraft Configurations Via an Adjoint Formulation

Download or read book Aerodynamic Shape Optimization of Complex Aircraft Configurations Via an Adjoint Formulation written by James Reuther and published by . This book was released on 1996 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "This work describes the implementation of optimization techniques based on control theory for complex aircraft configurations. Here control theory is employed to derive the adjoint differential equations, the solution of which allows for a drastic reduction in computational costs over previous design methods [13, 12, 43, 38]. In our earlier studies [19, 20, 22, 23, 39, 25, 40, 41, 42] it was shown that this method could be used to devise effective optimization procedures for airfoils, wings and wing-bodies subject to either analytic or arbitrary meshes. Design formulations for both potential flows and flows governed by the Euler equations have been demonstrated, showing that such methods can be devised for various governing equations [39, 25]. In our most recent works [40, 42] the method was extended to treat wing-body configurations with a large number of mesh points, verifying that significant computational savings can be gained for practical design problems. In this paper the method is extended for the Euler equations to treat complete aircraft configurations via a new multiblock implementation. New elements include a multiblock-multigrid flow solver, a multiblock-multigrid adjoint solver, and a multiblock mesh perturbation scheme. Two design examples are presented in which the new method is used for the wing redesign of a transonic business jet."

Book Impact of Turbulence Models and Shape Parameterization on Robust Aerodynamic Shape Optimization

Download or read book Impact of Turbulence Models and Shape Parameterization on Robust Aerodynamic Shape Optimization written by Aslihan Vuruskan and published by . This book was released on 2020 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Aerodynamic design optimization is typically performed at fixed flight conditions, without considering the variation and uncertainty in operating conditions. The objective of robust aerodynamic optimization is to design an aerodynamic configuration, which will keep its optimum performance under varying conditions such as the speed of aircraft. The primary goal of this study was to investigate the impact of turbulence models used in RANS simulations on the 2-D airfoil and 3-D wing designs obtained with gradient-based deterministic and robust optimization in transonic, viscous, turbulent flows. The main contribution of this research to the aerodynamic design area was to quantify the impact of turbulence models (Spalart-Allmaras and Menter's Shear Stress Transport) and shape parameterization techniques (Hicks-Henne bump functions, B-Spline curves and Free-Form Deformation) on the computational cost, optimal shape, and its performance obtained with robust optimization under uncertainty. The effect of changing the relative weight of mean drag reduction and robustness measures used in the objective function was also investigated for the 3-D robust design. The robustness of the final design obtained with stochastic optimization approach was demonstrated over the Mach number range considered as the uncertain operating condition in this study. The results of the 2-D study show that the shape parameterization technique has a larger impact on the computational cost than the turbulence models in both deterministic and robust design. The results of the 3-D study show that the effect of the weight distribution in the objective function is more significant than the effect of turbulence model on the final design obtained with robust optimization below the design Mach number value. In general, robust optimization tends to reduce the impact of the turbulence model selection on the optimum shape and performance over the uncertain Mach number range considered, whereas the effect of the turbulence model becomes significant at off-design conditions for the optimal shapes obtained with deterministic design"--Abstract, page iii.

Book Engineering Design Optimization

Download or read book Engineering Design Optimization written by Joaquim R. R. A. Martins and published by Cambridge University Press. This book was released on 2021-11-18 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.

Book High fidelity Aerodynamic Shape Optimization for Natural Laminar Flow

Download or read book High fidelity Aerodynamic Shape Optimization for Natural Laminar Flow written by Ramy Rashad and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: To ensure the long-term sustainability of aviation, serious effort is underway to mitigate the escalating economic, environmental, and social concerns of the industry. Significant improvement to the energy efficiency of air transportation is required through the research and development of advanced and unconventional airframe and engine technologies. In the quest to reduce airframe drag, this thesis is concerned with the development and demonstration of an effective design tool for improving the aerodynamic efficiency of subsonic and transonic airfoils. The objective is to advance the state-of-the-art in high-fidelity aerodynamic shape optimization by incorporating and exploiting the phenomenon of laminar-turbulent transition in an efficient manner. A framework for the design and optimization of Natural Laminar Flow (NLF) airfoils is developed and demonstrated with transition prediction capable of accounting for the effects of Reynolds number, freestream turbulence intensity, Mach number, and pressure gradients. First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver has been extended to incorporate an iterative laminar-turbulent transition prediction methodology. The natural transition locations due to Tollmien-Schlichting instabilities are predicted using the simplified e^N envelope method of Drela and Giles or, alternatively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-layer properties are obtained directly from the Navier-Stokes flow solution, and the transition to turbulent flow is modeled using an intermittency function in conjunction with the Spalart-Allmaras turbulence model. The RANS solver is subsequently employed in a gradient-based sequential quadratic programming shape optimization framework. The laminar-turbulent transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using a new augmented discrete-adjoint formulation for non-local transition criteria. Using the e^N transition criterion, the proposed framework is applied to the single and multipoint optimization of subsonic and transonic airfoils, leading to robust NLF designs. The aerodynamic design requirements over a range of cruise flight conditions are cast into a multipoint optimization problem through a composite objective defined using a weighted integral of the operating points. To study and quantify off-design performance, a Pareto front is formed using a weighted objective combining free-transition and fully-turbulent operating conditions. Next we examine the sensitivity of NLF design to the freestream disturbance environment, highlighting the on- and off-design performance at different critical N-factors. Finally, we propose and demonstrate a technique to enable the design of airfoils with robust performance over a range of critical N-factors.

Book An Embedded Boundary Method with Smoothness Guarantees and Its Impact on Aerodynamic Shape Optimization with Topological Changes

Download or read book An Embedded Boundary Method with Smoothness Guarantees and Its Impact on Aerodynamic Shape Optimization with Topological Changes written by Jonathan Bing Hang Ho and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamic shape optimization using computational fluid dynamics (CFD) displaces the traditional aerodynamic design paradigm. Optimization algorithms automate the design generation process that is historically driven by engineering intuition, while CFD obviates the time-consuming and expensive construction of physical models. Embedded (or immersed) boundary methods (EBMs) for CFD are attractive for aerodynamic shape optimization problems characterized by large shape deformations and topology changes. They introduce a high degree of automation in the task of mesh generation and a significant flexibility in meshing complex geometries. Unfortunately, they suffer some disadvantages because they perform their computations on embedding, non body-fitted fluid meshes. In particular, they tend to generate discrete events that introduce discontinuities in the semi-discretization process and lead to unsmooth numerical solutions that are less than ideal for differentiation with respect to the evolution of a discrete, fluid/structure interface. This hinders the application of EBMs to the gradient-based solution of aerodynamic shape optimization problems. Discrete events also promote spurious oscillations in the post-processing of time-dependent results computed at the fluid/structure interface. This work addresses these issues in the context of FIVER, a comprehensive framework for developing EBMs for highly nonlinear, compressible, fluid/structure interaction (FSI) problems. It revisits the concept of the status of a node of an embedding fluid mesh and introduces that of a smoothness indicator nodal function, to eliminate discrete events and achieve smoothness in the semi-discretization process. It also introduces a moving least squares approach in the loads evaluation algorithm, to suppress spurious oscillations from integral quantities computed on the fluid/structure interface. Equipped with these enhancements, the newly created EBM FIVER$^{++}$ is shown to deliver, for three different applications, smooth, differentiable results. This work demonstrates the potential of shape-differentiable EBMs on several aerodynamic shape optimization problems. Most significantly, it showcases the optimization of a full configuration aircraft under turbulent flow, considering design spaces that involve deformations of the wing shape and airfoil section, as well as the placement of the nacelle-pylon on the wing.

Book Computational Aerodynamics

    Book Details:
  • Author : Antony Jameson
  • Publisher : Cambridge University Press
  • Release : 2022-09
  • ISBN : 1108837883
  • Pages : 627 pages

Download or read book Computational Aerodynamics written by Antony Jameson and published by Cambridge University Press. This book was released on 2022-09 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the design and analysis of numerical algorithms for aerodynamics. Ideal for graduates, researchers, and professionals in the field.

Book Aerodynamic Shape Optimization Techniques Based on Control Theory

Download or read book Aerodynamic Shape Optimization Techniques Based on Control Theory written by and published by . This book was released on 2000 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document serves as a final technical report for the AFOSR award F49620-95-1-0259. It reviews the formulation and application of optimization techniques based on control theory for aerodynamic shape design in viscous compressible flow. The theory is applied to a system defined by the partial differential equations of the flow, with the boundary shape acting as the control. The Frechet derivative of the cost function is determined via the solution of an adjoint partial differential equation, and the boundary shape is then modified in a direction of descent. This process is repeated until an optimum solution is approached. Each design cycle requires the numerical solution of both the flow and the adjoint equations, leading to a computational cost roughly equal to the cost of two flow solutions. Representative results are presented for viscous optimization of transonic wing-body combinations.

Book Optimization and Computational Fluid Dynamics

Download or read book Optimization and Computational Fluid Dynamics written by Dominique Thévenin and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.

Book Design Principles and Methods for Aircraft Gas Turbine Engines

Download or read book Design Principles and Methods for Aircraft Gas Turbine Engines written by and published by . This book was released on 1999 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The symposium dealt with design approaches for military aircraft propulsion systems to provide enhanced operational flexibility, longer range, better fuel efficiency and improved affordability. All classes of gas turbines were addressed in nine sessions as follows: Engine Design and Analysis (Part 1) (5 papers); Mechanical Systems (6 papers); Controls (4 papers); Combustors/Augmentors (4 papers); Compressor Systems (Part I) (5 papers); Compressor Systems (Part II) (3 papers); Turbines (Part I) (5 papers); Turbines (Part II) (4 papers); Engine Design and Analysis (Part II) (4 papers) These proceedings also include a Technical Evaluation Report and a Keynote address published in French and English.

Book Active Subspaces

    Book Details:
  • Author : Paul G. Constantine
  • Publisher : SIAM
  • Release : 2015-03-17
  • ISBN : 1611973864
  • Pages : 105 pages

Download or read book Active Subspaces written by Paul G. Constantine and published by SIAM. This book was released on 2015-03-17 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: