EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

Download or read book A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-15 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow. Ameri, A. A. and Rigby, D. L. Glenn Research Center NASA/CR-1999-209165, NAS 1.26:209165, E-11756

Book Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects

Download or read book Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects written by Laurene D. Dobrowolski and published by . This book was released on 2009 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computations and experiments were run to study heat transfer and overall effectiveness for a simulated turbine blade leading edge. Computational predictions were run for a film cooled leading edge model using a conjugate numerical method to predict the normalized "metal" temperatures for the model. This computational study was done in conjunction with a parallel effort to experimentally determine normalized metal temperatures, i.e. overall effectiveness, using a specially designed high conductivity model. Predictions of overall effectiveness were higher than experimentally measured values in the stagnation region, but lower along the downstream section of the leading edge. Reasons for the differences between computational predictions and experimental measurements were examined. Also of interest was the validity of Taw as the driving temperature for heat transfer into the blade, and this was examined via computations. Overall, this assumption gave reasonable results except near the stagnation line. Experiments were also conducted on a leading edge with no film cooling to gain a better understanding of the additional cooling provided by film cooling. Heat flux was also measured and external and internal heat transfer coefficients were determined. The results showed roughly constant overall effectiveness on the external surface.

Book Local Heat Transfer and Effectiveness Measurements on Film Cooled Turbine Blade Tip Models

Download or read book Local Heat Transfer and Effectiveness Measurements on Film Cooled Turbine Blade Tip Models written by Srinath Varadarajan Ekkad and published by . This book was released on 1991 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Analysis for Film Cooling Performance Under Different Jet Design Criteria

Download or read book Numerical Analysis for Film Cooling Performance Under Different Jet Design Criteria written by Mohammed Aref Al-Hemyari and published by . This book was released on 2018 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Cooling gas turbine blades is a crucial technique to allow higher turbine inlet temperatures. A higher turbine inlet temperature allows boosting gas turbine efficiency, which reduces fuel consumption. One of the main cooling techniques of the turbine blades is film cooling where a relatively low air temperature is used to form a blanket of cool air around the blade to shield it from high temperature gases. Many complex interrelated geometry and flow parameters affect the effectiveness of the film cooling. The complex interrelations between these parameters are considered the main challenge in properly understanding the effect of these parameters on film cooling. Testing such cooling techniques under actual engine conditions is even more challenging due to difficulty of installing proper instrumentations. Numerical techniques are viable analysis techniques that are used to better understand film cooling techniques. In this study, a simplified 2D film cooling jet blown from the slot jet is investigated under multiple variable parameters, mainly, the blowing ratio, jet angle, density ratio and centrifugal force. The performance of the film cooling is reported using local and average adiabatic film effectiveness. The main contribution of this study is exploring the effect of the centrifugal force and wall material selection using conjugate heat transfer on film cooling effectiveness. The centrifugal force reduces the overall adiabatic film effectiveness. A correlation between the blowing ratio, density ratio and injection angle is developed in this work. The highest film cooling performance was founded at a blowing ratio of 0.8, an injection angle of 30° and density ratio of 1.2."--Abstract.

Book A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download or read book A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1995 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Measurement and Analysis of Gas Turbine Blade Tip Heat Transfer and Film Cooling

Download or read book Measurement and Analysis of Gas Turbine Blade Tip Heat Transfer and Film Cooling written by Jae Su Kwak and published by . This book was released on 2002 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book Effects of Film Cooling on Turbine Blade Tip Flow Structures and Thermal Loading

Download or read book Effects of Film Cooling on Turbine Blade Tip Flow Structures and Thermal Loading written by Louis Edward Christensen and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbine engines are an essential technology in aviation and power generation. One of the challenges associated with increasing the efficiency of gas turbines is the thermal loading experienced by the engine components downstream of the combustors especially the high-pressure turbine blades. High temperatures and rotational velocities can cause blade failures in numerous ways such as creep or stress rupture. Technologies like film cooling are implemented in these components to lower the thermal loading and reduce the risk of failure. However, these introduce complexities into the flow which in turn increases the difficulty of predicting the performance of film cooled turbines. Accurately predicting the capabilities of these components is essential to prevent failure in gas turbine engines. Engineers use a combination of experiments and computational simulations to understand how these technologies perform and predict the operating conditions and lifespan of these components. A combined experimental and numerical program is performed on a single stage high-pressure turbine to increase understanding of film cooling in gas turbines and improve computational methods used to predict their performance. The turbine studied is a contemporary production model from Honeywell Aerospace with both cooled and uncooled turbine blades. The experimental work is performed at The Ohio State University Gas Turbine Laboratory Turbine Test Facility, a short duration facility operating at engine corrected conditions. The experiments capture heat flux, temperature, and pressure data across the entire blade, but this work will focus on the turbine blade tip data. Tip temperature data are captured using a high-speed infrared camera providing a unique data set unseen in the current literature. In addition to the experiments, transient conjugate heat transfer simulations of a single turbine passage are performed to recreate the experiments and give insight into the flow field in the tip region of the turbine blades. The experiments and simulations are conducted to provide a better understanding of the interactions of the film cooling and tip flows along with their relationship to the thermal loading on the turbine blade tip. Film cooling in the tip region adds complexity to the flow and a non-intuitive relationship exists between film cooling and thermal loading. Addition of cooling is not guaranteed to reduce the thermal loading on the blade tips. Cooling jets can displace hot gases protecting the blade, but they are also capable of shifting flow structures and trapping hot gases near the blade surface especially so in corners of the blade tips. These direct and indirect methods of altering the thermal loading open a new path to optimization where engineers consider how the coolant alters the flow in addition to forming a protective layer of cool gas. This can be done to more effectively use coolant not only in the blade tips but elsewhere on the turbine blades leading to higher engine efficiencies and more sustainable gas turbine engines.

Book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades

Download or read book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades written by Ernst Rudolf Georg Eckert and published by . This book was released on 1951 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

Book Heat Transfer on a Film Cooled Rotating Blade

Download or read book Heat Transfer on a Film Cooled Rotating Blade written by Vijay K. Garg and published by . This book was released on 1999 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Simulation and Analysis of Film Cooling for the Leading edge Model of a Turbine Blade

Download or read book Computational Simulation and Analysis of Film Cooling for the Leading edge Model of a Turbine Blade written by and published by . This book was released on 2007 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of interest is the cooling of turbine blades in large gas combustion engines where hot gases from the combustor cause thermal deterioration of the metal turbine blades. A thin-film of coolant flow buffers the hottest parts of the blade surface. Heat transfer on a bluff body and, subsequently, a single-hole cooling problem is solved numerically in two-dimensions. The flow is assumed to be incompressible, and the laminar, steady Navier-Stokes equations are used to obtain the flow solution. Results for the bluff-body heat transfer agree very well with experimental data up to the separation point, and are within 20% of the data thereafter. The film-cooling simulation yielded higher cooling effectiveness due in large part to the use of the two-dimensional model, which treats the hole as a slot with higher coolant mass. Results from the simulations indicate that the Cobalt flow solver is capable of solving complex heat transfer problems.

Book Local Heat Transfer and Film Effectiveness of a Film Cooled Gas Turbine Blade Tip

Download or read book Local Heat Transfer and Film Effectiveness of a Film Cooled Gas Turbine Blade Tip written by Adedapo Oluyomi Adewusi and published by . This book was released on 1999 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gas Turbine Heat Transfer and Cooling Technology

Download or read book Gas Turbine Heat Transfer and Cooling Technology written by Je-Chin Han and published by Taylor & Francis. This book was released on 2012-11-27 with total page 865 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, this second edition focuses on gas turbine heat transfer issues and their associated cooling technologies for aircraft and land-based gas turbines. It provides information on state-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling schemes. The book also offers updated experimental methods for gas turbine heat transfer and cooling research, as well as advanced computational models for gas turbine heat transfer and cooling performance predictions. The authors provide suggestions for future research within this technology and includes 800 illustrations to help clarify concepts and instruction.

Book An Experimental and Numerical Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole

Download or read book An Experimental and Numerical Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole written by Gerard Scheepers and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments regarding internal cooling techniques have allowed the operation of modern gas turbine engines at turbine inlet temperatures which exceed the metallurgical capability of the turbine blade. This has allowed the operation of engines at a higher thermal efficiency and lower specific fuel consumption. Modern turbine blade-cooling techniques rely on external film cooling to protect the outer surface of the blade from the hot gas path and internal cooling to remove thermal energy from the blade. Optimization of coolant performance and blade-life estimation require knowledge regarding the influence of cooling application on the blade inner and outer surface heat transfer. The following study describes a combined experimental and computational study of heat transfer augmentation near the entrance to a film-cooling hole. Steady-state heat transfer results were acquired by using a transient measurement technique in an 80 x actual rectangular channel, representing an internal cooling channel of a turbine blade. Platinum thin-film gauges were used to measure the inner surface heat transfer augmentation as a result of thermal boundary layer renewal and impingement near the entrance of a film-cooling hole. Measurements were taken at various suction ratios, extraction angles and wall temperature ratios with a main duct Reynolds number of 25? 103. A numerical technique, based on the resolution of the unsteady conduction equation, using a Crank-Nicholson scheme, was used to obtain the surface heat flux from the measured surface temperature history. Computational data was generated with the use of a commercial CFD solver.

Book Blade to coolant Heat transfer Results and Operating Data from a Natural convection Water cooled Single stage Turbine

Download or read book Blade to coolant Heat transfer Results and Operating Data from a Natural convection Water cooled Single stage Turbine written by Anthony J. Diaguila and published by . This book was released on 1951 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Analysis of Blade Tip Leakage Flow and Shroud Heat Transfer in Gas Turbine Engines

Download or read book Numerical Analysis of Blade Tip Leakage Flow and Shroud Heat Transfer in Gas Turbine Engines written by Md. Hamidur Rahman and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most critical components of gas turbine engines, rotor blade tip and casing, is exposed to high thermal load. It is a significant challenge to the designer to protect the turbine material from this severe situation. Leakage flow over the blade tip is also one of the important issues to improve the turbine performance. To understand the detailed phenomena and natures of the heat transfer on the turbine blade tip and casing in association with the tip leakage flow under actual turbine operating conditions, both steady and unsteady simulations have been conducted. A single stage gas turbine engine was modeled and simulated using commercial CFD solver ANSYS CFX R.11. The modeled turbine stage has 30 vanes and 60 blades with a pressure ratio of 3.2 and a rotational speed of 9500 rpm. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data under the close operating condition. Through the steady simulations, the typical tip leakage flow structures and heat transfer rate distributions were analyzed. The tip leakage flow separates and recirculates just around the pressure side edge of the blade tip. This coverage of the recirculating flow results in low heat transfer rates on the tip surface. The leakage flow then reattaches on the tip surface beyond the flow separation zone. This flow reattachment has shown enhanced heat transfer rates on the tip. The leakage flow interaction with the reverse cross flow, induced by relative casing motion, is found to have significant effect on the casing heat transfer rate distribution. Critical region of high heat transfer rate on the casing exists near the blade tip leading edge and along the pressure side edge. Whereas near the suction side the heat transfer rates are relatively low due to the coverage of the reverse cross flow. The effects of the tip clearance heights and rotor rotating speeds were also investigated. The region of recirculating flow increases with the increase of clearance heights. The flow incidence changes and the casing relative motion is enhanced with higher rotation speeds. As a result, the high heat transfer rate regions have been changed with these two parameters. Unsteady simulations have been performed to investigate time dependent behaviors of the leakage flow structures and heat transfer on the rotor casing and blade tip. The effects of different time steps, number of sub iteration and number of rotor vane passing were firstly examined. The periodicity of the tip leakage flow and heat transfer rate distribution is observed for each vane passing. The relative change in the position of the vane and the vane trailing edge shock alters the inlet flow conditions of the rotor part. It results in the periodic variations of the leakage flow structures and heat transfer rate distributions. The higher heat transfer rates were observed at the region where the trailing edge shock reached. The maximum amplitude of the pressure fluctuation in the tip region is about 20% of the averaged rotor inlet pressure. The maximum amplitude of the heat transfer rate fluctuation on the blade tip, caused by the unsteady leakage flow variations, reaches up to about 25% of the mean heat transfer rate. The effects of tip clearance heights and rotor speeds have also been analyzed and compared one with respect to others. Same typical patterns of leakage flow structures and heat transfer rate distribution can be obtained in both steady and unsteady simulations. However, steady simulation underpredicted the highest heat transfer rate. Because it couldn't capture the critical local high heat transfer phenomena caused by the unsteady stator-rotor interactions.