EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Novel Spectroscopic Ellipsometer in the Infrared

Download or read book A Novel Spectroscopic Ellipsometer in the Infrared written by Jean-Charles Cigal and published by . This book was released on 2002 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Infrared Spectroscopic Ellipsometry

Download or read book Infrared Spectroscopic Ellipsometry written by Arnulf Röseler and published by VCH. This book was released on 1990 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Spectroscopic Ellipsometry of Thin Film Materials

Download or read book Introduction to Spectroscopic Ellipsometry of Thin Film Materials written by Andrew T. S. Wee and published by John Wiley & Sons. This book was released on 2022-03-08 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-of-a-kind text offering an introduction to the use of spectroscopic ellipsometry for novel material characterization In Introduction to Spectroscopic Ellipsometry of Thin Film Materials: Instrumentation, Data Analysis and Applications, a team of eminent researchers delivers an incisive exploration of how the traditional experimental technique of spectroscopic ellipsometry is used to characterize the intrinsic properties of novel materials. The book focuses on the scientifically and technologically important two-dimensional transition metal dichalcogenides (2D-TMDs), magnetic oxides like manganite materials, and unconventional superconductors, including copper oxide systems. The distinguished authors discuss the characterization of properties, like electronic structures, interfacial properties, and the consequent quasiparticle dynamics in novel quantum materials. Along with illustrative and specific case studies on how spectroscopic ellipsometry is used to study the optical and quasiparticle properties of novel systems, the book includes: Thorough introductions to the basic principles of spectroscopic ellipsometry and strongly correlated systems, including copper oxides and manganites Comprehensive explorations of two-dimensional transition metal dichalcogenides Practical discussions of single layer graphene systems and nickelate systems In-depth examinations of potential future developments and applications of spectroscopic ellipsometry Perfect for master’s- and PhD-level students in physics and chemistry, Introduction to Spectroscopic Ellipsometry of Thin Film Materials will also earn a place in the libraries of those studying materials science seeking a one-stop reference for the applications of spectroscopic ellipsometry to novel developed materials.

Book Spectroscopic Ellipsometry

Download or read book Spectroscopic Ellipsometry written by Hiroyuki Fujiwara and published by John Wiley & Sons. This book was released on 2007-09-27 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ellipsometry is a powerful tool used for the characterization of thin films and multi-layer semiconductor structures. This book deals with fundamental principles and applications of spectroscopic ellipsometry (SE). Beginning with an overview of SE technologies the text moves on to focus on the data analysis of results obtained from SE, Fundamental data analyses, principles and physical backgrounds and the various materials used in different fields from LSI industry to biotechnology are described. The final chapter describes the latest developments of real-time monitoring and process control which have attracted significant attention in various scientific and industrial fields.

Book Design and Performance of an Infrared Spectroscopic Ellipsometer reflectometer for Thin film Characterization

Download or read book Design and Performance of an Infrared Spectroscopic Ellipsometer reflectometer for Thin film Characterization written by Michael Scott Thomas and published by . This book was released on 1996 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spectroscopic Ellipsometry

Download or read book Spectroscopic Ellipsometry written by Harland G. Tompkins and published by Momentum Press. This book was released on 2015-12-16 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ellipsometry is an experimental technique for determining the thickness and optical properties of thin films. It is ideally suited for films ranging in thickness from sub-nanometer to several microns. Spectroscopic measurements have greatly expanded the capabilities of this technique and introduced its use into all areas where thin films are found: semiconductor devices, flat panel and mobile displays, optical coating stacks, biological and medical coatings, protective layers, and more. While several scholarly books exist on the topic, this book provides a good introduction to the basic theory of the technique and its common applications. The target audience is not the ellipsometry scholar, but process engineers and students of materials science who are experts in their own fields and wish to use ellipsometry to measure thin film properties without becoming an expert in ellipsometry itself.

Book Infrared Ellipsometry on Semiconductor Layer Structures

Download or read book Infrared Ellipsometry on Semiconductor Layer Structures written by Mathias Schubert and published by Springer Science & Business Media. This book was released on 2004-11-26 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of semiconductor-layer structures using infrared ellipsometry is a rapidly growing field within optical spectroscopy. This book offers basic insights into the concepts of phonons, plasmons and polaritons, and the infrared dielectric function of semiconductors in layered structures. It describes how strain, composition, and the state of the atomic order within complex layer structures of multinary alloys can be determined from an infrared ellipsometry examination. Special emphasis is given to free-charge-carrier properties, and magneto-optical effects. A broad range of experimental examples are described, including multinary alloys of zincblende and wurtzite structure semiconductor materials, and future applications such as organic layer structures and highly correlated electron systems are proposed.

Book Study of novel electronic materials by mid infrared and terahertz optical Hall effect

Download or read book Study of novel electronic materials by mid infrared and terahertz optical Hall effect written by Nerijus Armakavicius and published by Linköping University Electronic Press. This book was released on 2017-10-23 with total page 43 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of silicon based electronics have revolutionized our every day life during the last three decades. Nowadays Si based devices operate close to their theoretical limits that is becoming a bottleneck for further progress. In particular, for the growing field of high frequency and high power electronics, Si cannot offer the required properties. Development of materials capable of providing high current densities, carrier mobilities and high breakdown fields is crucial for a progress in state of the art electronics. Epitaxial graphene grown on semi-insulating silicon carbide substrates has a high potential to be integrated in the current planar device technologies. High electron mobilities and sheet carrier densities make graphene extremely attractive for high frequency analog applications. One of the remaining challenges is the interaction of epitaxial graphene with the substrate. Typically, much lower free charge carrier mobilities, compared to free standing graphene, and doping, due to charge transfer from the substrate, is reported. Thus, a good understanding of the intrinsic free charge carriers properties and the factors affecting them is very important for further development of epitaxial graphene. III-group nitrides have been extensively studied and already have proven their high efficiency as light sources for short wavelengths. High carrier mobilities and breakdown electric fields were demonstrated for III-group nitrides, making them attractive for high frequency and high power applications. Currently, In-rich InGaN alloys and AlGaN/GaN high electron mobility structures are of high interest for the research community due to open fundamental questions. Electrical characterization techniques, commonly used for the determination of free charge carrier properties, require good ohmic and Schottky contacts, which in certain cases can be difficult to achieve. Access to electrical properties of buried conductive channels in multilayered structures requires modification of samples and good knowledge of the electrical properties of all electrical contact within the structure. Moreover, the use of electrical contacts to electrically characterize two-dimensional electronic materials, such as graphene, can alter their intrinsic properties. Furthermore, the determination of effective mass parameters commonly employs cyclotron resonance and Shubnikov-de Haas oscillations measurements, which require long scattering times of free charge carriers, high magnetic fields and low temperatures. The optical Hall effect is an external magnetic field induced optical anisotropy in conductive layers due to the motion of the free charge carriers under the influence of the Lorentz force, and is equivalent to the electrical Hall effect at optical frequencies. The optical Hall effect can be measured by generalized ellipsometry and provides a powerful method for the determination of free charge carrier properties in a non-destructive and contactless manner. In principle, a single optical Hall effect measurement can provide quantitative information about free charge carrier types, concentrations, mobilities and effective mass parameters at temperatures ranging from few kelvins to room temperature and above. Further, it was demonstrated that for transparent samples, a backside cavity can be employed to enhance the optical Hall effect. Measurement of the optical Hall effect by generalized ellipsometry is an indirect technique requiring subsequent data analysis. Parameterized optical models are fitted to match experimentally measured ellipsometric data by varying physically significant parameters. Analysis of the optical response of samples, containing free charge carriers, employing optical models based on the classical Drude model, which is augmented with an external magnetic field contribution, provide access to the free charge carrier properties. The main research results of the graduate studies presented in this licentiate thesis are summarized in the five scientific papers. Paper I. Description of the custom-built terahertz frequency-domain spectroscopic ellipsometer at Linköping University. The terahertz ellipsometer capabilities are demonstrated by an accurate determination of the isotropic and anisotropic refractive indices of silicon and m-plane sapphire, respectively. Further, terahertz optical Hall effect measurements of an AlGaN/GaN high electron mobility structures were employed to extract the two-dimensional electron gas sheet density, mobility and effective mass parameters. Last, in-situ optical Hall effect measurement on epitaxial graphene in a gas cell with controllable environment, were used to study the effects of environmental doping on the mobility and carrier concentration. Paper II. Presents terahertz cavity-enhanced optical Hall measurements of the monolayer and multilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed p-type doping for monolayer graphene with a carrier density in the low 1012 cm?2 range and a carrier mobility of 1550 cm2/V·s. For the multilayer epitaxial graphene, n-type doping with a carrier density in the low 1013 cm?2 range, a mobility of 470 cm2/V·s and an effective mass of (0.14 ± 0.03) m0 were extracted. The measurements demonstrate that cavity-enhanced optical Hall effect measurements can be applied to study electronic properties of two-dimensional materials. Paper III. Terahertz cavity-enhanced optical Hall effect measurements are employed to study anisotropic transport in as-grown monolayer, quasi free-standing monolayer and quasi free-standing bilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed a strong anisotropy in the carrier mobilities of the quasi freestanding bilayer graphene. The anisotropy is demonstrated to be induced by carriers scattering at the step edges of the SiC, by showing that the mobility is higher along the step than across them. The scattering mechanism is discussed based on the results of the optical Hall effect, low-energy electron microscopy, low-energy electron diffraction and Raman measurements. Paper IV. Mid-infrared spectroscopic ellipsometry and mid-infrared optical Hall effect measurements are employed to determine the electron effective mass in an In0.33Ga0.67N epitaxial layer. The data analysis reveals slightly anisotropic effective mass and carrier mobility parameters together with the optical phonon frequencies and broadenings. Paper V. Terahertz cavity-enhanced optical Hall measurements are employed to study the free charge carrier properties in a set of AlGaN/GaN high electron mobility structures with modified interfaces. The results show that the interface structure has a significant effect on the free charge carrier mobility and that the sample with a sharp interface between an AlGaN barrier and a GaN buffer layers exhibits a record mobility of 2332±73 cm2/V·s. The determined effective mass parameters showed an increase compared to the GaN value, that is attributed the the penetration of the electron wavefunction into the AlGaN barrier layer.

Book Far infrared Spectroscopic Ellipsometry on AIII BV Semiconductor Heterostructures

Download or read book Far infrared Spectroscopic Ellipsometry on AIII BV Semiconductor Heterostructures written by Tino Hofmann and published by . This book was released on 2004 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ellipsometry at the Nanoscale

Download or read book Ellipsometry at the Nanoscale written by Maria Losurdo and published by Springer Science & Business Media. This book was released on 2013-03-12 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and introduces ellipsometry in nanoscience and nanotechnology making a bridge between the classical and nanoscale optical behaviour of materials. It delineates the role of the non-destructive and non-invasive optical diagnostics of ellipsometry in improving science and technology of nanomaterials and related processes by illustrating its exploitation, ranging from fundamental studies of the physics and chemistry of nanostructures to the ultimate goal of turnkey manufacturing control. This book is written for a broad readership: materials scientists, researchers, engineers, as well as students and nanotechnology operators who want to deepen their knowledge about both basics and applications of ellipsometry to nanoscale phenomena. It starts as a general introduction for people curious to enter the fields of ellipsometry and polarimetry applied to nanomaterials and progresses to articles by experts on specific fields that span from plasmonics, optics, to semiconductors and flexible electronics. The core belief reflected in this book is that ellipsometry applied at the nanoscale offers new ways of addressing many current needs. The book also explores forward-looking potential applications.

Book Ellipsometry of Functional Organic Surfaces and Films

Download or read book Ellipsometry of Functional Organic Surfaces and Films written by Karsten Hinrichs and published by Springer. This book was released on 2018-05-06 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition provides a state-of-the-art survey of ellipsometric methods used to study organic films and surfaces, from laboratory to synchrotron applications, with a special focus on in-situ use in processing environments and at solid-liquid interfaces. Thanks to the development of functional organic, meta- and hybrid materials for new optical, electronic, sensing and biotechnological devices, the ellipsometric analysis of optical and material properties has made tremendous strides over the past few years. The second edition has been updated to reflect the latest advances in ellipsometric methods. The new content focuses on the study of anisotropic materials, conjugated polymers, polarons, self-assembled monolayers, industrial membranes, adsorption of proteins, enzymes and RGD-peptides, as well as the correlation of ellipsometric spectra to structure and molecular interactions.

Book Spectroscopic Infrared Ellipsometry

Download or read book Spectroscopic Infrared Ellipsometry written by Johannes Henricus Wilhelmes Gerardus Den Boer and published by . This book was released on 1995 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Opto mechanical Design of Synchrotron Radiation based Far infrared Spectroscopic Ellipsometer with Strong Magnetic field

Download or read book Opto mechanical Design of Synchrotron Radiation based Far infrared Spectroscopic Ellipsometer with Strong Magnetic field written by Ahmad Abbas Chaudhry and published by . This book was released on 2016 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this dissertation is to present opto-mechanical design of a synchrotron radiation based far-infrared spectroscopic ellipsometer with a strong external magnetic-field capability. Since high magnetic field has enabled major breakthrough in science such instrument will be highly important to the field of condensed matter physics and characterization of advanced electronic materials. This instrument will be installed at the multi-User facility with the most advanced synchrotron light source: Natonal Synchrotron Source (NSLS-II) at Brookhaven National Laboratory (BNL).The proposed here instrument is capable to measure full Mueller matrix spectroscopic ellipsometry spectra in high magnetic fields of up to 9 Tesla. The designed instrument consists of Polarization State Generator (PSG) chamber, Spectromag optical solenoid (high magnetic field up to 9 T), cryogenic sample stage, Polarization State Analyzer (PSA) chamber, and a bolometer. The PSG and PSA vacuum chambers are separated from the magnet volume with two pairs of gate valves equipped with optical windows. This instrument is capable of using synchrotron radiation in the spectral range of 20 cm-1 and 4000 cm-1. The sample stage could operate in the low temperature range down to 4 K with an option to cool sample down to 1.6 K. This instrument allows User to switch between Faraday and Voigt configurations for external magnetic field. This ellipsometer will be able to measure the full-Mueller matrix spectra using rotating retarders and rotating polarizers.

Book Selected Papers on Ellipsometry

Download or read book Selected Papers on Ellipsometry written by R. M. A. Azzam and published by . This book was released on 1990 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spectroscopic Ellipsometry for Photovoltaics

Download or read book Spectroscopic Ellipsometry for Photovoltaics written by Hiroyuki Fujiwara and published by Springer. This book was released on 2019-01-10 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a basic understanding of spectroscopic ellipsometry, with a focus on characterization methods of a broad range of solar cell materials/devices, from traditional solar cell materials (Si, CuInGaSe2, and CdTe) to more advanced emerging materials (Cu2ZnSnSe4, organics, and hybrid perovskites), fulfilling a critical need in the photovoltaic community. The book describes optical constants of a variety of semiconductor light absorbers, transparent conductive oxides and metals that are vital for the interpretation of solar cell characteristics and device simulations. It is divided into four parts: fundamental principles of ellipsometry; characterization of solar cell materials/structures; ellipsometry applications including optical simulations of solar cell devices and online monitoring of film processing; and the optical constants of solar cell component layers.

Book Semiconductor Interfaces  Microstructures and Devices

Download or read book Semiconductor Interfaces Microstructures and Devices written by Zhe Chuan Feng and published by CRC Press. This book was released on 1993-01-01 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: A semiconductor interface is the contact between the semiconductor itself and a metal. The interface is a site of change, and it is imperative to ensure that the semiconducting material is sealed at this point to maintain its reliability. This book examines various aspects of interfaces, showing how they can affect microstructures and devices such as infrared photodetectors (as used in nightsights) and blue diode lasers. It presents various techniques for examining different types of semiconductor material and suggests future potential commercial applications for different semiconductor devices. Written by experts in their fields and focusing on metallic semiconductors (Cadmium Telluride and related compounds), this comprehensive overview of recent developments is an essential reference for those working in the semiconductor industry and provides a concise and comprehensive introduction to those new to the field.