EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Novel Single stage Solar PV Micro inverter with Active Power Decoupling Circuit

Download or read book A Novel Single stage Solar PV Micro inverter with Active Power Decoupling Circuit written by 鄭雅今 and published by . This book was released on 2012 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Single Phase Grid Tie Inverter for Solar PV Panels with Active Power Decoupling Circuit

Download or read book Single Phase Grid Tie Inverter for Solar PV Panels with Active Power Decoupling Circuit written by Karthik Ramasubramanian and published by . This book was released on 2012 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed energy resources like solar power (PV Panels) are usually connected to the AC grid through a single phase voltage source inverter (VSI). The major drawback associated with single phase grid tie inverters is the double frequency component of the grid that appears on the DC bus link. Large electrolytic capacitors are generally employed in the inverters to eliminate the ripple component. However, their bulkiness and relatively short lifetime are motivational factors to replace them with small film capacitors. This paper presents a synchronous boost/buck based active power decoupling circuit in parallel with the dc-bus link capacitor and discusses the different types of control strategies implemented. Simulation results are presented for each control technique and it is shown that the ripple on the DC bus link is largely reduced due to inclusion of this circuit along with an expected extension of the lifetime due to the reduction in the amount of dc-bus capacitance used.

Book Resonant Micro Inverters for Single Phase Grid connected Photovoltaic Systems

Download or read book Resonant Micro Inverters for Single Phase Grid connected Photovoltaic Systems written by and published by . This book was released on 2015 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis addresses the design and implementation of micro-inverters for grid-connected single-phase photovoltaic (PV) systems. Despite the existing research issues concerning Micro-inverters, they have recently become very attractive due to their modularity and capability of independent maximum power point tracking (MPPT). The complexity in the design of micro-inverters stems from strict grid connection standards and high expectations of compactness, large amplification gain, high efficiency over a wide range of operating conditions and excellent output power quality. Moreover, since micro-inverters are exposed to a wide temperature range, the reliability and life-time of this technology are major problems. The main limiting factor in the life-time of micro-inverters is the use of large electrolytic capacitors for power decoupling. New circuit configuration and control structures to design a compact and efficient micro-inverter with high quality and robust output power injection capabilities are introduced in this thesis. In the proposed topology electrolytic capacitors are eliminated, removing the obstacles in achieving a durable and reliable design. To achieve a compact design, the proposed micro-inverter consists of a soft-switching high frequency resonant converter at the input and a hard-switching lower frequency inverter with a high order filter at the output. Small and large signal models of the resonant converter are obtained to design controllers. A new optimal controller and a design method are also proposed for the inverter that yield robust performance with a high quality output in the presence of grid voltage harmonics, impedance uncertainties and frequency changes. Furthermore, using a new nonlinear control strategy, a direct instantaneous power control method is proposed to achieve fast active and reactive power injections into the grid without using the measurement or calculation of active and reactive powers. A comprehensive steady state analysis is carried out to arrive at a final design that ensures optimum responses for all operating conditions. Moreover, for all proposed controllers, stability analysis is performed to guarantee sufficient stability margins accounting for uncertainties and nonlinearities. Analytical, simulation and experimental results are presented to verify the effectiveness of the proposed methods.

Book Single Stage Flyback Micro inverter for Solar Energy Systems

Download or read book Single Stage Flyback Micro inverter for Solar Energy Systems written by Aniruddha Mukherjee and published by . This book was released on 2013 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar energy systems based on photovoltaic (PV) cells have attracted considerable interest in recent years due to their promise of clear and seemingly limitless generated energy. Solar energy systems based on micro-inverter architectures are gaining in popularity as they are less prone to shading and PV cell malfunction since each solar panel in a system has its own low power inverter. A number of micro-inverters are single stage flyback inverters that are based on the DC-DC flyback topologies. There have been numerous papers on the topic of how to improve the efficiency of dc-dc flyback converters but as far as improving the efficiency of dc-ac flyback micro-inverter is concerned, comparatively less investigation on efficiency improvement has been performed. A low cost technique for improving the efficiency of a basic dc-ac flyback micro-inverter is proposed in the paper. The proposed efficiency improving technique is based on a simple snubber, consisting of just a few passive elements. In the thesis, the flyback micro-inverter with the passive snubber is presented; the modes of operation of the converter are discussed as well as the design of the converter with the passive snubber. Experimental results obtained from a lab prototype are presented as well. A second novel technique for improving the efficiency of a s ingle stage flyback micro-inverter is also proposed. The technique is based on combining the simple passive snubber with a variable frequency control zero-voltage switching (ZVS) technique. In the thesis, the operation of the micro-inverter with both the passive snubber and the ZVS III technique is explained and the design of the converter is discussed. Experimental results obtained from a lab prototype are presented to confirm the effectiveness of the both the techniques.

Book Advanced DC AC Inverters

Download or read book Advanced DC AC Inverters written by Fang Lin Luo and published by CRC Press. This book was released on 2017-07-28 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors, including more than 50 new circuits. It also discusses recently published cutting-edge topologies. Novel PWM and Multilevel Inverters The book first covers traditional pulse-width-modulation (PWM) inverters before moving on to new quasi-impedance source inverters and soft-switching PWM inverters. It then examines multilevel DC/AC inverters, which have overcome the drawbacks of PWM inverters and provide greater scope for industrial applications. The authors propose four novel multilevel inverters: laddered multilevel inverters, super-lift modulated inverters, switched-capacitor inverters, and switched-inductor inverters. With simple structures and fewer components, these inverters are well suited for renewable energy systems. Get the Best Switching Angles for Any Multilevel Inverter A key topic for multilevel inverters is the need to manage the switching angles to obtain the lowest total harmonic distortion (THD). The authors outline four methods for finding the best switching angles and use simulation waveforms to verify the design. The optimum switching angles for multilevel DC/AC inverters are also listed in tables for quick reference. Application Examples of DC/AC Inverters in Renewable Energy Systems Highlighting the importance of inverters in improving energy saving and power-supply quality, the final chapter of the book supplies design examples for applications in wind turbine and solar panel energy systems. Written by pioneers in advanced conversion and inversion technology, this book guides readers in designing more effective DC/AC inverters for use in renewable energy systems.

Book Design and Implementation of a Grid connected Solar Micro inverter Using a Single stage Galvanically Isolated Topology with Integrated Magnetics

Download or read book Design and Implementation of a Grid connected Solar Micro inverter Using a Single stage Galvanically Isolated Topology with Integrated Magnetics written by Hafis Umar-Lawal and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar panels have been steadily increasing in capacity and decreasing in cost over the past few years. Given this context, and other incentives designed to increase renewable energy penetration, residential solar adoption is becoming more economically attractive. The solar AC module stands out amongst alternative residential solar technologies, for better modularity, higher efficiency, and ease-of-use. The Micro-Inverter (MI) topology bundled with the AC module then becomes a key factor in the overall cost, safety, and capacity of the system. The Flyback (FB) MI topology is a popular choice, thanks to its low component count and enhanced safety, but as modern residential solar panels trend towards 400 W and up, non-interleaved FB MIs, typically rated around 200 W, must become interleaved. Conventional FB MI interleaving is High Frequency (HF) interleaving, which adds a potentially bulky magnetic device to the topology. This thesis proposes and tests the application of an alternate topology, called the Isolated Manitoba Inverter (ISOMBI). The ISOMBI uses integrated magnetic devices and Low Frequency (LF) interleaving, to match the power rating of HF-interleaved FB MIs, without the extra bulky component. ISOMBI operating principles and analyses are disclosed, and an experimental prototype is constructed to test its ability as a grid connected power generator. The results show near unity Power Factor (PF), acceptable DC current levels and promising Total Demand Distortion (TDD). Overall, these results indicate that the LF-interleaved ISOMBI can be considered as a viable alternative to the HF-interleaved FB MIs in AC modules.

Book Three port Micro inverter with Power Decoupling Capability for Photovoltaic  PV  Systems Applications

Download or read book Three port Micro inverter with Power Decoupling Capability for Photovoltaic PV Systems Applications written by Souhib Mohammad Ali Harb and published by . This book was released on 2010 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Photovoltaic (PV) systems have been realized using different architectures, starting with the string and centralized PV system to the modular PV system. Presently, decentralized inverters are being developed at the PV panel power level (known as AC-PV Modules). Such new PV systems are becoming more attractive and many expect this will be the trend of the future. The AC-Module PV system consists of an inverter attached to one PV panel. This integration requires that both devices have the same life-span. Although, the available commercial inverters have a relatively short life-span (10 years) compared to the 25 -year PV. It has been stated in literature that the energy storage capacitor (electrolytic type) in the single-phase inverter is the most vulnerable electronic component. Hence, many techniques such as (power decoupling techniques) have been proposed to solve this problem by replacing the large electrolytic capacitor with a small film capacitor. This thesis will present a quick review of these power decoupling techniques, and proposes a new three-port micro-inverter with power decoupling capability for AC-Module PV system applications.

Book Single Stage Grid Connected Micro Inverter for Photovoltaic Systems

Download or read book Single Stage Grid Connected Micro Inverter for Photovoltaic Systems written by NIKHIL. SUKESH and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Single phase Current Source Solar Inverter with Constant Instantaneous Power  Improved Reliability  and Reduced size DC link Filter

Download or read book A Single phase Current Source Solar Inverter with Constant Instantaneous Power Improved Reliability and Reduced size DC link Filter written by Craig R. Bush and published by . This book was released on 2013 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.

Book Grid Converters for Photovoltaic and Wind Power Systems

Download or read book Grid Converters for Photovoltaic and Wind Power Systems written by Remus Teodorescu and published by John Wiley & Sons. This book was released on 2011-07-28 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grid converters are the key player in renewable energy integration. The high penetration of renewable energy systems is calling for new more stringent grid requirements. As a consequence, the grid converters should be able to exhibit advanced functions like: dynamic control of active and reactive power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: modern grid inverter topologies for photovoltaic and wind turbines islanding detection methods for photovoltaic systems synchronization techniques based on second order generalized integrators (SOGI) advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active damping techniques power control under grid fault conditions, considering both positive and negative sequences Grid Converters for Photovoltaic and Wind Power Systems is intended as a coursebook for graduated students with a background in electrical engineering and also for professionals in the evolving renewable energy industry. For people from academia interested in adopting the course, a set of slides is available for download from the website. www.wiley.com/go/grid_converters

Book Modular Multilevel Converters

Download or read book Modular Multilevel Converters written by Sixing Du and published by John Wiley & Sons. This book was released on 2018-02-22 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Book A Novel Single stage Inverter Topology

Download or read book A Novel Single stage Inverter Topology written by Md Mahmud-Ul-Tarik Chowdhury and published by . This book was released on 2016 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverters are considered key components to enable the integration of renewable energy sources into the grid. These power processing circuits convert dc voltage into ac, and are needed in numerous applications, including residential photovoltaic (PV) systems. The state of the art inverters have several shortcomings such as limited voltage gain, low power density, high failure rates, and low efficiency. This thesis proposes a new inverter topology that can overcome the problems associated with most conventional inverters. The proposed inverter is a single stage configuration, and employs five semiconductor switches, in which one is operating at a high frequency and the rest are operating at the fundamental frequency of the load. The proposed inverter is capable of both stepping up and stepping down the voltage. This is a unique advantage over most state of the art single-stage inverters, which can either step up or step down the voltage. In the proposed inverter, a small capacitor transfers power from the input towards the output. The inverter is designed and controlled such that the required link capacitance is very low; therefore, film capacitors that have longer lifetime compared to electrolytic capacitors can be used. Unlike most conventional isolated inverters that use low frequency transformer (LFT), in the proposed inverter a high frequency transformer (HFT) can be used for providing galvanic isolation. This feature decreases the total size of the system. The proposed inverter can be modified slightly to offer soft-switching, which significantly increases the efficiency. In this thesis, the principles of the operation of the proposed inverter is studied, and its performance is evaluated through simulation and experiment.

Book Reactive Power Support Capability of Flyback Microinverter with Pseudo dc Link

Download or read book Reactive Power Support Capability of Flyback Microinverter with Pseudo dc Link written by Edwin Fonkwe Fongang and published by . This book was released on 2015 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: The flyback micro-inverter with a pseudo-dc link has traditionally been used for injecting only active power in to the power distribution network. In this thesis, a new approach will be proposed to control the micro-inverter to supply reactive power to the grid which is important for grid voltage support. Circuit models and mathematical analyses are developed to explain underlying issues such as harmonic distortion, and power losses, which can limit the reactive power support capability. A novel current decoupling circuit is proposed to effectively mitigate zero crossing distortion. Simulations and experimental results are provided to support the theoretical propositions.

Book Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

Download or read book Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems written by Dmitri Vinnikov and published by . This book was released on 2021 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Book Op Amps for Everyone

Download or read book Op Amps for Everyone written by Ron Mancini and published by Newnes. This book was released on 2003 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The operational amplifier ("op amp") is the most versatile and widely used type of analog IC, used in audio and voltage amplifiers, signal conditioners, signal converters, oscillators, and analog computing systems. Almost every electronic device uses at least one op amp. This book is Texas Instruments' complete professional-level tutorial and reference to operational amplifier theory and applications. Among the topics covered are basic op amp physics (including reviews of current and voltage division, Thevenin's theorem, and transistor models), idealized op amp operation and configuration, feedback theory and methods, single and dual supply operation, understanding op amp parameters, minimizing noise in op amp circuits, and practical applications such as instrumentation amplifiers, signal conditioning, oscillators, active filters, load and level conversions, and analog computing. There is also extensive coverage of circuit construction techniques, including circuit board design, grounding, input and output isolation, using decoupling capacitors, and frequency characteristics of passive components. The material in this book is applicable to all op amp ICs from all manufacturers, not just TI. Unlike textbook treatments of op amp theory that tend to focus on idealized op amp models and configuration, this title uses idealized models only when necessary to explain op amp theory. The bulk of this book is on real-world op amps and their applications; considerations such as thermal effects, circuit noise, circuit buffering, selection of appropriate op amps for a given application, and unexpected effects in passive components are all discussed in detail. *Published in conjunction with Texas Instruments *A single volume, professional-level guide to op amp theory and applications *Covers circuit board layout techniques for manufacturing op amp circuits.

Book Energy Harvesting

    Book Details:
  • Author : Alireza Khaligh
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351834029
  • Pages : 529 pages

Download or read book Energy Harvesting written by Alireza Khaligh and published by CRC Press. This book was released on 2017-12-19 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.

Book Renewable and Efficient Electric Power Systems

Download or read book Renewable and Efficient Electric Power Systems written by Gilbert M. Masters and published by John Wiley & Sons. This book was released on 2005-01-03 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive textbook for the new trend of distributed power generation systems and renewable energy sources in electric power systems. It covers the complete range of topics from fundamental concepts to major technologies as well as advanced topics for power consumers. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department -- to obtain the manual, send an email to [email protected]