EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A New Architecture for Low voltage Low phase noise High frequency CMOS LC Voltage controlled Oscillator

Download or read book A New Architecture for Low voltage Low phase noise High frequency CMOS LC Voltage controlled Oscillator written by Anthony Dac Lieu and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented in this work is a novel design technique for a low-phase-noise high-frequency CMOS voltage-controlled oscillator. Phase noise is generated from electrical noise near DC, the oscillation frequency, and its harmonics. In CMOS technology, low-frequency flicker noise dominates the close-in phase noise of the VCO. The proposed technique minimizes the VCO phase noise by seeking to eliminate the effect of flicker noise on the phase n6se. This is accomplished by canceling out the DC component of the impulse sensitivity function (ISF) corresponding to each flicker-noise source, thus preventing the up-conversion of low-frequency noise into phase noise. The proposed circuit topology is a modified version of the complementary cross-coupled transconductance VCO, where additional feedback paths are introduced such that a designer can choose the feedback ratios, transistor sizes, and bias voltages to achieve the previously mentioned design objectives. A step-by-step design algorithm is presented along with a MATLAB script to aid in the computation of the ISFs and the phase noise of the VCO. Using this algorithm, a 5-GHz VCO was designed and fabricated in a 0.18m︡ CMOS process, and then tested for comparison with simulated results.

Book Low Power VCO Design in CMOS

Download or read book Low Power VCO Design in CMOS written by Marc Tiebout and published by Springer Science & Business Media. This book was released on 2006-01-25 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work covers the design of CMOS fully integrated low power low phase noise voltage controlled oscillators for telecommunication or datacommuni- tion systems. The need for low power is obvious, as mobile wireless telecommunications are battery operated. As wireless telecommunication systems use oscillators in frequency synthesizers for frequency translation, the selectivity and signal to noise ratio of receivers and transmitters depend heavily on the low phase noise performance of the implemented oscillators. Datacommunication s- tems need low jitter, the time-domain equivalent of low phase noise, clocks for data detection and recovery. The power consumption is less critical. The need for multi-band and multi-mode systems pushes the high-integration of telecommunication systems. This is o?ered by sub-micron CMOS feat- ing digital ?exibility. The recent crisis in telecommunication clearly shows that mobile hand-sets became mass-market high-volume consumer products, where low-cost is of prime importance. This need for low-cost products - livens tremendously research towards CMOS alternatives for the bipolar or BiCMOS solutions in use today.

Book Design of High Performance CMOS Voltage Controlled Oscillators

Download or read book Design of High Performance CMOS Voltage Controlled Oscillators written by Liang Dai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.

Book Low Voltage CMOS RF Frequency Synthesizers

Download or read book Low Voltage CMOS RF Frequency Synthesizers written by Howard Cam Luong and published by Cambridge University Press. This book was released on 2004-08-26 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: A frequency synthesizer is one of the most critical building blocks in any wireless transceiver system. Its design is getting more and more challenging as the demand for low-voltage low-power high-frequency wireless systems continuously grows. As the supply voltage is decreased, many existing design techniques are no longer applicable. This book provides the reader with architectures and design techniques to enable CMOS frequency synthesizers to operate at low supply voltage at high frequency with good phase noise and low power consumption. In addition to updating the reader on many of these techniques in depth, this book will also introduce useful guidelines and step-by-step procedure on behaviour simulations of frequency synthesizers. Finally, three successfully demonstrated CMOS synthesizer prototypes with detailed design consideration and description will be elaborated to illustrate potential applications of the architectures and design techniques described. For engineers, managers and researchers working in radio-frequency integrated-circuit design for wireless applications.

Book Low power Low phase noise Voltage controlled Oscillator Design

Download or read book Low power Low phase noise Voltage controlled Oscillator Design written by Yue Yu and published by . This book was released on 2006 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: The design of voltage-controlled Oscillators nowadays is all about being capable of operating at higher clock frequencies for the purpose of higher data rate, consuming less power for the purpose of longer battery life, and having better phase noise performance for the purpose of higher quality of wireless service and more efficient use of the available frequency spectrum since most of the wireless and mobile terminals that these VCOs work in are required to be able to operate in multiple RF standards to serve new generations of standards while being backward compatible with existing ones, leading to a demand for multi-standard multi-band radio operation that deals with high frequency RF signals that undergo different modulation schemes of different standards in different channels over a wide range of frequency band. A top-down system design from the PLL to the VCO is carried out to determine the specifications for a fully integrated dual-band voltage-controlled oscillator (VCO) designed for a Zero-IF WiMAX/WLAN receiver in a O.18tm CMOS technology with 1.8V supply voltage. A VCO employing a differential cross-coupled inductance-capacitance (LC) tank architecture is proposed to cover twice the desired frequency bands for WiMAX and WLAN standards in order to avoid load pulling between VCO frequency and incoming RF frequency. The switching between two bands is implemented by using two binary-weighted capacitor arrays while switching inside each sub-band is implemented by different digital control signal combinations for the binary-weighted capacitances. A phase noise of -120.7dB/Hz at 1MHz offset frequency is demonstrated for an oscillation frequency of 4.84GHz. The average power consumption of this VCO is 8.1mW. This VCO is developed as an IP (Intellectual Property) to be used in a fully integrated CMOS multi-standard WiMAX/WLAN radio allowing seamless roaming of handheld mobile devices between hotspots in future Wireless Metropolitan Area Network (WMAN). To compare the performance of ring oscillators to that of LC tank oscillators, the designs of two three-stage multiple-pass voltage-controlled ring oscillators with dual-delay paths are demonstrated where the differential delay cell utilizes both the primary loop delay and the negative skewed delay to increase the frequency of oscillation substantially and retain or even increase tuning range. Their phase noise performance is also improved by switching in and out the transistors periodically. In design I, the covered frequency range is from 0.74 GHz to 1.96 GHz, which translates to a tuning range of 90 % A phase noise of -104.995dBc/Hz is demonstrated for an oscillation frequency of 1.8535 GHz. Each stage draws a current of 4.963mA on average from a 1.8V power supply, resulting in a power consumption of 26.8mW. In design II, the covered frequency range is from 1.0478 GHz to 2.0022 GHz, which translates to a tuning range of 63%. The frequency-voltage curve is almost a perfect linear curve for V between OV and 0.9V. A phase noise of -110.O45dBc/Hz is demonstrated for an oscillation frequency of 2.00216 GHz. Each stage draws a current of 10.179mA on average from a 1.8V power supply, resulting in a power consumption of 55mW.

Book The Design of Low Noise Oscillators

Download or read book The Design of Low Noise Oscillators written by Ali Hajimiri and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.

Book A Comparative Study of Low Phase Noise Voltage controlled Oscillators  VCOs  in CMOS Technology

Download or read book A Comparative Study of Low Phase Noise Voltage controlled Oscillators VCOs in CMOS Technology written by Hu Jing Yao and published by . This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Voltage controlled oscillators (VCOs) are key components in frequency synthesizers for Radio Frequency (RF) wireless communications. The design of monolithic VCOs with standard CMOS processes has been the object of several recent research projects. The common goal of these attempts has been to investigate the possibility of meeting the very demanding VCO phase noise specifications without making use of bipolar processes or external components. Two categories of VCOs are studied in this thesis, one involving an inductor, and the other is inductor free, which is a ring oscillator. The study of the phase noise performance of complementary LC VCO shows that most of the phase noises come from the tail current. A modification has been made based on this topology, where the tail transistor is removed. However this brings another problem: higher power consumption. To overcome this problem, sub-threshold techniques have been used leading to sub-threshold LC VCO. A Ring oscillator is designed at the end because of its wide tuning range and ease of implementation. Schematic simulations, layout and post-layout simulations are accomplished using TSMC 0.18 um CMOS technology. The performances of the three types of VCOs are compared regarding the oscillating frequency, phase noise and tuning range. All of these can be used in the Bluetooth applications. In addition, the figure of merit (FOM) of the designed VCOs is compared with work by other researchers.

Book CMOS PLL Synthesizers  Analysis and Design

Download or read book CMOS PLL Synthesizers Analysis and Design written by Keliu Shu and published by Springer Science & Business Media. This book was released on 2006-01-20 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thanks to the advance of semiconductor and communication technology, the wireless communication market has been booming in the last two decades. It evolved from simple pagers to emerging third-generation (3G) cellular phones. In the meanwhile, broadband communication market has also gained a rapid growth. As the market always demands hi- performance and low-cost products, circuit designers are seeking hi- integration communication devices in cheap CMOS technology. The phase-locked loop frequency synthesizer is a critical component in communication devices. It works as a local oscillator for frequency translation and channel selection in wireless transceivers and broadband cable tuners. It also plays an important role as the clock synthesizer for data converters in the analog-and-digital signal interface. This book covers the design and analysis of PLL synthesizers. It includes both fundamentals and a review of the state-of-the-art techniques. The transient analysis of the third-order charge-pump PLL reveals its locking behavior accurately. The behavioral-level simulation of PLL further clarifies its stability limit. Design examples are given to clearly illustrate the design procedure of PLL synthesizers. A complete derivation of reference spurs in the charge-pump PLL is also presented in this book. The in-depth investigation of the digital CA modulator for fractional-N synthesizers provides insightful design guidelines for this important block.

Book Low Noise Low Power Design for Phase Locked Loops

Download or read book Low Noise Low Power Design for Phase Locked Loops written by Feng Zhao and published by Springer. This book was released on 2014-11-25 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces low-noise and low-power design techniques for phase-locked loops and their building blocks. It summarizes the noise reduction techniques for fractional-N PLL design and introduces a novel capacitive-quadrature coupling technique for multi-phase signal generation. The capacitive-coupling technique has been validated through silicon implementation and can provide low phase-noise and accurate I-Q phase matching, with low power consumption from a super low supply voltage. Readers will be enabled to pick one of the most suitable QVCO circuit structures for their own designs, without additional effort to look for the optimal circuit structure and device parameters.

Book Wireless CMOS Frequency Synthesizer Design

Download or read book Wireless CMOS Frequency Synthesizer Design written by J. Craninckx and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent boom in the mobile telecommunication market has trapped the interest of almost all electronic and communication companies worldwide. New applications arise every day, more and more countries are covered by digital cellular systems and the competition between the several providers has caused prices to drop rapidly. The creation of this essentially new market would not have been possible without the ap pearance of smalI, low-power, high-performant and certainly low-cost mobile termi nals. The evolution in microelectronics has played a dominant role in this by creating digital signal processing (DSP) chips with more and more computing power and com bining the discrete components of the RF front-end on a few ICs. This work is situated in this last area, i. e. the study of the full integration of the RF transceiver on a single die. Furthermore, in order to be compatible with the digital processing technology, a standard CMOS process without tuning, trimming or post-processing steps must be used. This should flatten the road towards the ultimate goal: the single chip mobile phone. The local oscillator (LO) frequency synthesizer poses some major problems for integration and is the subject of this work. The first, and also the largest, part of this text discusses the design of the Voltage Controlled Oscillator (VCO). The general phase noise theory of LC-oscillators is pre sented, and the concept of effective resistance and capacitance is introduced to char acterize and compare the performance of different LC-tanks.

Book Phase Noise Suppression Techniques for 5 6GHZ Oscillator Design

Download or read book Phase Noise Suppression Techniques for 5 6GHZ Oscillator Design written by Yang Zhang and published by . This book was released on 2007 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A 1 8 GHz LC Voltage Controlled Oscillator Using On chip Inductors and Body Driven Varactors in CMOS 0 35  mu m Process

Download or read book A 1 8 GHz LC Voltage Controlled Oscillator Using On chip Inductors and Body Driven Varactors in CMOS 0 35 mu m Process written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In an era dominated by the highly demanding wireless communication system, there is a great need for developing small, cheap, and low power RF sub-systems. This demand has lead to significant research on completely integrated transceiver systems. One of the great challenges in an integrated transceiver system is the frequency synthesizer. Frequency synthesizers are usually implemented using a phase locked loop (PLL) and low frequency highly stable crystal oscillator. The spectral purity of a synthesized carrier signal depends on the kind of Voltage Controlled Oscillator (VCO) used. Hence successful implementation of a low phase noise, completely integrated VCO in standard CMOS process is a major step towards implementing a completely integrated transceiver. The best VCO architecture in terms of noise performance is LC-VCO. The aim of the current research is to design a completely integrated 1.8 GHz LC-VCO for a GSM or DCS-1800 receiver in standard CMOS 0.35 [mu]m technology. The major challenge in a completely integrated LC-VCO is to develop an fully integrated inductor. In this research various means of implementing an integrated inductor have been scrutinized and the best feasible among them the on-chip spiral inductor has been analyzed elaborately. The complete design cycle from describing the specification of an inductor to the final layout in Cadence has been described. Also a new symmetrical, highly balanced on-chip inductor has been used in the current design. Another important and the most critical challenge is to implement a very high tuning range, high Q-factor on-chip varactor in standard CMOS process. In this research a new body driven varactor, which is forced to operate in accumulation mode has been developed and analyzed elaborately. The tuning range specification for the design was chosen to be 200 MHz accounting for component tolerance. Various means of measuring phase noise has been elaborately analyzed. Also detailed study on improving the noise performance of the LC-VCO has been studied.

Book A High Speed Integrated Voltage Controlled Oscillator in Commercial CMOS Technology

Download or read book A High Speed Integrated Voltage Controlled Oscillator in Commercial CMOS Technology written by Sameer Vasantlal Vora and published by . This book was released on 1998 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Designer s Guide to High Purity Oscillators

Download or read book The Designer s Guide to High Purity Oscillators written by Emad Eldin Hegazi and published by Springer Science & Business Media. This book was released on 2006-07-18 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.