EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Linear Optimization

    Book Details:
  • Author : Glenn Hurlbert
  • Publisher : Springer Science & Business Media
  • Release : 2009-11-09
  • ISBN : 0387791485
  • Pages : 279 pages

Download or read book Linear Optimization written by Glenn Hurlbert and published by Springer Science & Business Media. This book was released on 2009-11-09 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Subject A little explanation is in order for our choice of the title Linear Opti- 1 mization (and corresponding terminology) for what has traditionally been called Linear Programming.Theword programming in this context can be confusing and/or misleading to students. Linear programming problems are referred to as optimization problems but the general term linear p- gramming remains. This can cause people unfamiliar with the subject to think that it is about programming in the sense of writing computer code. It isn’t. This workbook is about the beautiful mathematics underlying the ideas of optimizing linear functions subject to linear constraints and the algorithms to solve such problems. In particular, much of what we d- cuss is the mathematics of Simplex Algorithm for solving such problems, developed by George Dantzig in the late 1940s. The word program in linear programming is a historical artifact. When Dantzig ?rstdevelopedthe Simplex Algorithm to solvewhat arenowcalled linear programming problems, his initial model was a class of resource - location problems to be solved for the U.S. Air Force. The decisions about theallocationswerecalled‘Programs’bytheAirForce,andhencetheterm.

Book Introduction to Mathematical Optimization

Download or read book Introduction to Mathematical Optimization written by Matteo Fischetti and published by . This book was released on 2019-09-12 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to be a teaching aid for students of the courses in Operations Research and Mathematical Optimization for scientific faculties. Some of the basic topics of Operations Research and Optimization are considered: Linear Programming, Integer Linear Programming, Computational Complexity, and Graph Theory. Particular emphasis is given to Integer Linear Programming, with an exposition of the most recent resolution techniques, and in particular of the branch-and-cut method. The work is accompanied by numerous examples and exercises.

Book Linear Programming with MATLAB

Download or read book Linear Programming with MATLAB written by Michael C. Ferris and published by SIAM. This book was released on 2007-01-01 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to linear programming using MATLAB® software to elucidate the development of algorithms and theory. Exercises are included in each chapter, and additional information is provided in two appendices and an accompanying Web site. Only a basic knowledge of linear algebra and calculus is required.

Book Introduction to Optimization

Download or read book Introduction to Optimization written by Pablo Pedregal and published by Springer Science & Business Media. This book was released on 2006-03-04 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook introduces students of science and engineering to the fascinating field of optimization. It is a unique book that brings together the subfields of mathematical programming, variational calculus, and optimal control, thus giving students an overall view of all aspects of optimization in a single reference. As a primer on optimization, its main goal is to provide a succinct and accessible introduction to linear programming, nonlinear programming, numerical optimization algorithms, variational problems, dynamic programming, and optimal control. Prerequisites have been kept to a minimum, although a basic knowledge of calculus, linear algebra, and differential equations is assumed.

Book Convex Optimization

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Book Linear Programming

    Book Details:
  • Author : Howard Karloff
  • Publisher : Springer Science & Business Media
  • Release : 2008-11-19
  • ISBN : 0817648437
  • Pages : 149 pages

Download or read book Linear Programming written by Howard Karloff and published by Springer Science & Business Media. This book was released on 2008-11-19 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming.... Style is informal. ...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews This is a textbook intended for advanced undergraduate or graduate students. It contains both theory and computational practice. —Zentralblatt Math

Book A Mathematical Primer for Social Statistics

Download or read book A Mathematical Primer for Social Statistics written by John Fox and published by SAGE. This book was released on 2009 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideal primer for students and researchers across the social sciences who wish to master the necessary maths in order to pursue studies involving advanced statistical methods

Book A Mathematical Primer for Social Statistics

Download or read book A Mathematical Primer for Social Statistics written by John Fox and published by SAGE Publications. This book was released on 2021-01-11 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.

Book A Math Primer for Engineers

Download or read book A Math Primer for Engineers written by C.W. Cryer and published by IOS Press. This book was released on 2014-03-04 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics and engineering are inevitably interrelated, and this interaction will steadily increase as the use of mathematical modelling grows. Although mathematicians and engineers often misunderstand one another, their basic approach is quite similar, as is the historical development of their respective disciplines. The purpose of this Math Primer is to provide a brief introduction to those parts of mathematics which are, or could be, useful in engineering, especially bioengineering. The aim is to summarize the ideas covered in each subject area without going into exhaustive detail. Formulas and equations have not been avoided, but every effort has been made to keep them simple in the hope of persuading readers that they are not only useful but also accessible. The wide range of topics covered includes introductory material such as numbers and sequences, geometry in two and three dimensions, linear algebra, and the calculus. Building on these foundations, linear spaces, tensor analysis and Fourier analysis are introduced. All these concepts are used to solve problems for ordinary and partial differential equations. Illustrative applications are taken from a variety of engineering disciplines, and the choice of a suitable model is considered from the point of view of both the mathematician and the engineer. This book will be of interest to engineers and bioengineers looking for the mathematical means to help further their work, and it will offer readers a glimpse of many ideas which may spark their interest.

Book 50 Years of Integer Programming 1958 2008

Download or read book 50 Years of Integer Programming 1958 2008 written by Michael Jünger and published by Springer Science & Business Media. This book was released on 2009-11-06 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1958, Ralph E. Gomory transformed the field of integer programming when he published a paper that described a cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In 2008, to commemorate the anniversary of this seminal paper, a special workshop celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. It contains reprints of key historical articles and written versions of survey lectures on six of the hottest topics in the field by distinguished members of the integer programming community. Useful for anyone in mathematics, computer science and operations research, this book exposes mathematical optimization, specifically integer programming and combinatorial optimization, to a broad audience.

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Book Optimization Methods in Finance

Download or read book Optimization Methods in Finance written by Gerard Cornuejols and published by Cambridge University Press. This book was released on 2006-12-21 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.

Book Introduction to Applied Linear Algebra

Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Book Optimization in Operations Research

Download or read book Optimization in Operations Research written by Ronald L. Rardin and published by Prentice Hall. This book was released on 2014-01-01 with total page 936 pages. Available in PDF, EPUB and Kindle. Book excerpt: For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.

Book A Primer on Scientific Programming with Python

Download or read book A Primer on Scientific Programming with Python written by Hans Petter Langtangen and published by Springer. This book was released on 2016-07-28 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015

Book First Order Methods in Optimization

Download or read book First Order Methods in Optimization written by Amir Beck and published by SIAM. This book was released on 2017-10-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.

Book Julia Programming for Operations Research

Download or read book Julia Programming for Operations Research written by Changhyun Kwon and published by Changhyun Kwon. This book was released on 2019-03-03 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia