EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sparse Polynomial Approximation of High Dimensional Functions

Download or read book Sparse Polynomial Approximation of High Dimensional Functions written by Ben Adcock and published by SIAM. This book was released on 2022-02-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Book Mathematical Visualization

Download or read book Mathematical Visualization written by H.-C. Hege and published by Springer Science & Business Media. This book was released on 1998-10-20 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Visualization is a young new discipline. It offers efficient visualization tools to the classical subjects of mathematics, and applies mathematical techniques to problems in computer graphics and scientific visualization. Originally, it started in the interdisciplinary area of differential geometry, numerical mathematics, and computer graphics. In recent years, the methods developed have found important applications. The current volume is the quintessence of an international workshop in September 1997 in Berlin, focusing on recent developments in this emerging area. Experts present selected research work on new algorithms for visualization problems, describe the application and experiments in geometry, and develop new numerical or computer graphical techniques.

Book Stochastic Finite Elements  A Spectral Approach

Download or read book Stochastic Finite Elements A Spectral Approach written by Roger G. Ghanem and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph considers engineering systems with random parame ters. Its context, format, and timing are correlated with the intention of accelerating the evolution of the challenging field of Stochastic Finite Elements. The random system parameters are modeled as second order stochastic processes defined by their mean and covari ance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used' to represent these processes in terms of a countable set of un correlated random vari ables. Thus, the problem is cast in a finite dimensional setting. Then, various spectral approximations for the stochastic response of the system are obtained based on different criteria. Implementing the concept of Generalized Inverse as defined by the Neumann Ex pansion, leads to an explicit expression for the response process as a multivariate polynomial functional of a set of un correlated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral repre sentation in terms of the Polynomial Chaoses is identified. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials.

Book Software for Exascale Computing   SPPEXA 2016 2019

Download or read book Software for Exascale Computing SPPEXA 2016 2019 written by Hans-Joachim Bungartz and published by Springer Nature. This book was released on 2020-07-30 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.

Book Gaussian Processes for Machine Learning

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1998 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Mechanics Reviews

Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1988 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Basic Structured Grid Generation

Download or read book Basic Structured Grid Generation written by M Farrashkhalvat and published by Elsevier. This book was released on 2003-02-11 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element, finite volume and finite difference methods use grids to solve the numerous differential equations that arise in the modelling of physical systems in engineering. Structured grid generation forms an integral part of the solution of these procedures. Basic Structured Grid Generation provides the necessary mathematical foundation required for the successful generation of boundary-conforming grids and will be an important resource for postgraduate and practising engineers.The treatment of structured grid generation starts with basic geometry and tensor analysis before moving on to identify the variety of approaches that can be employed in the generation of structured grids. The book then introduces unstructured grid generation by explaining the basics of Delaunay triangulation and advancing front techniques. - A practical, straightforward approach to this complex subject for engineers and students. - A key technique for modelling physical systems.

Book Chebyshev and Fourier Spectral Methods

Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2001-12-03 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

Book Applied Stochastic Differential Equations

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2000 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Frames and Riesz Bases

Download or read book An Introduction to Frames and Riesz Bases written by Ole Christensen and published by Birkhäuser. This book was released on 2016-05-24 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen’s An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." — Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005

Book Machine Vision for Three dimensional Scenes

Download or read book Machine Vision for Three dimensional Scenes written by Herbert Freeman and published by . This book was released on 1990 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: A framework for 3D recognition / Ruud M. Bolle and Andrea Califano -- The free-form surface matching problem / Paul J. Besl -- Object recognition by constrained search / W. Eric L. Grimson -- The use of characteristic-view classes for 3D object recognition / Ruye Wang and Herbert Freeman -- Interpretation of 3D medical scenes / C. Smets [and others] -- 3D motion estimation / T.S. Huang and A.N. Netravali -- Project LESTRADE : the design of a trainable machine vision inspection system / Herbert Freeman -- Fast 3D integrated circuit inspection / Arend van de Stadt and Albert Sicignano -- Segmentation and analysis of multi-sensor images / J.K. Aggarwal -- Occlusion-free sensor placement planning / Roger Y. Tsai and Kostantino TarabanisThe state of the art in real-time range mapping : a panel discussion / Joseph Wilder -- Generalized and separable Sobel operators / Per-Erik Danielsson and Olle Seger -- A fast lightstripe rangefinding system with smart VLSI sensor / Andrew Gruss, Takeo Kana ...

Book Tensor Voting

Download or read book Tensor Voting written by Philippos Mordohai and published by Springer Nature. This book was released on 2022-06-01 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organization methodology applicable in situations that may seem heterogeneous initially. We show how several problems can be posed as the organization of the inputs into salient perceptual structures, which are inferred via tensor voting. The work presented here extends the original tensor voting framework with the addition of boundary inference capabilities; a novel re-formulation of the framework applicable to high-dimensional spaces and the development of algorithms for computer vision and machine learning problems. We show complete analysis for some problems, while we briefly outline our approach for other applications and provide pointers to relevant sources.

Book The Finite Volume Method in Computational Fluid Dynamics

Download or read book The Finite Volume Method in Computational Fluid Dynamics written by F. Moukalled and published by Springer. This book was released on 2015-08-13 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Book Multiple View Geometry in Computer Vision

Download or read book Multiple View Geometry in Computer Vision written by Richard Hartley and published by Cambridge University Press. This book was released on 2004-03-25 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.

Book Adaptive High order Methods in Computational Fluid Dynamics

Download or read book Adaptive High order Methods in Computational Fluid Dynamics written by Z. J. Wang and published by World Scientific. This book was released on 2011 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.