Download or read book From Science to Computational Sciences written by Gabriele Gramelsberger and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In 1946 John von Neumann stated that science is stagnant along the entire front of complex problems, proposing the use of largescale computing machines to overcome this stagnation. In other words, Neumann advocated replacing analytical methods with numerical ones. The invention of the computer in the 1940s allowed scientists to realise numerical simulations of increasingly complex problems like weather forecasting, and climate and molecular modelling. Today, computers are widely used as computational laboratories, shifting science toward the computational sciences. By replacing analytical methods with numerical ones, they have expanded theory and experimentation by simulation. During the last decades hundreds of computational departments have been established all over the world and countless computer-based simulations have been conducted. This volume explores the epoch-making influence of automatic computing machines on science, in particular as simulation tools."--Back cover.
Download or read book Fundamentals of Scientific Computing written by Bertil Gustafsson and published by Springer Science & Business Media. This book was released on 2011-06-11 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book of nature is written in the language of mathematics -- Galileo Galilei How is it possible to predict weather patterns for tomorrow, with access solely to today’s weather data? And how is it possible to predict the aerodynamic behavior of an aircraft that has yet to be built? The answer is computer simulations based on mathematical models – sets of equations – that describe the underlying physical properties. However, these equations are usually much too complicated to solve, either by the smartest mathematician or the largest supercomputer. This problem is overcome by constructing an approximation: a numerical model with a simpler structure can be translated into a program that tells the computer how to carry out the simulation. This book conveys the fundamentals of mathematical models, numerical methods and algorithms. Opening with a tutorial on mathematical models and analysis, it proceeds to introduce the most important classes of numerical methods, with finite element, finite difference and spectral methods as central tools. The concluding section describes applications in physics and engineering, including wave propagation, heat conduction and fluid dynamics. Also covered are the principles of computers and programming, including MATLAB®.
Download or read book A History of Scientific Computing written by Stephen Nash and published by Addison Wesley Publishing Company. This book was released on 1990 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essays about pioneers in the field of scientific and numeric computing--John von Neumann, James Wilkinson, George Forsythe, and Howard Aiken--show how the drive to solve particular problems influenced the development of algorithms, software, and even computers. Methods that have led to new tools in computer analysis, such as the fast Fourier transform and finite-element and iterative methods, also are discussed, as well as the contributions of scientific organizations like ACM and SIAM and institutions like the Los Alamos Laboratory and the former National Bureau of Standards. The volume concludes with a view of numerical analysis in Europe and the Soviet Union. Annotation copyrighted by Book News, Inc., Portland, OR
Download or read book Scientific Computing written by Bertil Gustafsson and published by Springer. This book was released on 2018-10-03 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most significant computational methods and the history of their development. It begins with the earliest mathematical / numerical achievements made by the Babylonians and the Greeks, followed by the period beginning in the 16th century. For several centuries the main scientific challenge concerned the mechanics of planetary dynamics, and the book describes the basic numerical methods of that time. In turn, at the end of the Second World War scientific computing took a giant step forward with the advent of electronic computers, which greatly accelerated the development of numerical methods. As a result, scientific computing became established as a third scientific method in addition to the two traditional branches: theory and experimentation. The book traces numerical methods’ journey back to their origins and to the people who invented them, while also briefly examining the development of electronic computers over the years. Featuring 163 references and more than 100 figures, many of them portraits or photos of key historical figures, the book provides a unique historical perspective on the general field of scientific computing – making it a valuable resource for all students and professionals interested in the history of numerical analysis and computing, and for a broader readership alike.
Download or read book Scientific Computing written by Michael T. Heath and published by SIAM. This book was released on 2018-11-14 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.
Download or read book The Science of Computing written by Matti Tedre and published by CRC Press. This book was released on 2014-12-03 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field’s champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing’s central debates and portrays a broad perspective of the discipline. The book first looks at computing as a formal, theoretical discipline that is in many ways similar to mathematics, yet different in crucial ways. It traces a number of discussions about the theoretical nature of computing from the field’s intellectual origins in mathematical logic to modern views of the role of theory in computing. The book then explores the debates about computing as an engineering discipline, from the central technical innovations to the birth of the modern technical paradigm of computing to computing’s arrival as a new technical profession to software engineering gradually becoming an academic discipline. It presents arguments for and against the view of computing as engineering within the context of software production and analyzes the clash between the theoretical and practical mindsets. The book concludes with the view of computing as a science in its own right—not just as a tool for other sciences. It covers the early identity debates of computing, various views of computing as a science, and some famous characterizations of the discipline. It also addresses the experimental computer science debate, the view of computing as a natural science, and the algorithmization of sciences.
Download or read book A History of Modern Computing second edition written by Paul E. Ceruzzi and published by MIT Press. This book was released on 2003-04-08 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the first digital computer to the dot-com crash—a story of individuals, institutions, and the forces that led to a series of dramatic transformations. This engaging history covers modern computing from the development of the first electronic digital computer through the dot-com crash. The author concentrates on five key moments of transition: the transformation of the computer in the late 1940s from a specialized scientific instrument to a commercial product; the emergence of small systems in the late 1960s; the beginning of personal computing in the 1970s; the spread of networking after 1985; and, in a chapter written for this edition, the period 1995-2001. The new material focuses on the Microsoft antitrust suit, the rise and fall of the dot-coms, and the advent of open source software, particularly Linux. Within the chronological narrative, the book traces several overlapping threads: the evolution of the computer's internal design; the effect of economic trends and the Cold War; the long-term role of IBM as a player and as a target for upstart entrepreneurs; the growth of software from a hidden element to a major character in the story of computing; and the recurring issue of the place of information and computing in a democratic society. The focus is on the United States (though Europe and Japan enter the story at crucial points), on computing per se rather than on applications such as artificial intelligence, and on systems that were sold commercially and installed in quantities.
Download or read book Scientific Computing with MATLAB and Octave written by Alfio Quarteroni and published by Springer Science & Business Media. This book was released on 2010-05-30 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preface to the First Edition This textbook is an introduction to Scienti?c Computing. We will illustrate several numerical methods for the computer solution of c- tain classes of mathematical problems that cannot be faced by paper and pencil. We will show how to compute the zeros or the integrals of continuous functions, solve linear systems, approximate functions by polynomials and construct accurate approximations for the solution of di?erential equations. With this aim, in Chapter 1 we will illustrate the rules of the game thatcomputersadoptwhenstoringandoperatingwith realandcomplex numbers, vectors and matrices. In order to make our presentation concrete and appealing we will 1 adopt the programming environment MATLAB as a faithful c- panion. We will gradually discover its principal commands, statements and constructs. We will show how to execute all the algorithms that we introduce throughout the book. This will enable us to furnish an - mediate quantitative assessment of their theoretical properties such as stability, accuracy and complexity. We will solve several problems that will be raisedthrough exercises and examples, often stemming from s- ci?c applications.
Download or read book Histories of Computing written by Michael Sean Mahoney and published by Harvard University Press. This book was released on 2011-06-20 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer technology is pervasive in the modern world, its role ever more important as it becomes embedded in a myriad of physical systems and disciplinary ways of thinking. The late Michael Sean Mahoney was a pioneer scholar of the history of computing, one of the first established historians of science to take seriously the challenges and opportunities posed by information technology to our understanding of the twentieth century. MahoneyÕs work ranged widely, from logic and the theory of computation to the development of software and applications as craft-work. But it was always informed by a unique perspective derived from his distinguished work on the history of medieval mathematics and experimental practice during the Scientific Revolution. His writings offered a new angle on very recent events and ideas and bridged the gaps between academic historians and computer scientists. Indeed, he came to believe that the field was irreducibly pluralistic and that there could be only histories of computing. In this collection, Thomas Haigh presents thirteen of MahoneyÕs essays and papers organized across three categories: historiography, software engineering, and theoretical computer science. His introduction surveys MahoneyÕs work to trace the development of key themes, illuminate connections among different areas of his research, and put his contributions into context. The volume also includes an essay on Mahoney by his former students Jed Z. Buchwald and D. Graham Burnett. The result is a landmark work, of interest to computer professionals as well as historians of technology and science.
Download or read book Guide to Scientific Computing in C written by Joe Pitt-Francis and published by Springer Science & Business Media. This book was released on 2012-02-15 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.
Download or read book A First Course in Scientific Computing written by Rubin Landau and published by Princeton University Press. This book was released on 2011-10-30 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a new approach to introductory scientific computing. It aims to make students comfortable using computers to do science, to provide them with the computational tools and knowledge they need throughout their college careers and into their professional careers, and to show how all the pieces can work together. Rubin Landau introduces the requisite mathematics and computer science in the course of realistic problems, from energy use to the building of skyscrapers to projectile motion with drag. He is attentive to how each discipline uses its own language to describe the same concepts and how computations are concrete instances of the abstract. Landau covers the basics of computation, numerical analysis, and programming from a computational science perspective. The first part of the printed book uses the problem-solving environment Maple as its context, with the same material covered on the accompanying CD as both Maple and Mathematica programs; the second part uses the compiled language Java, with equivalent materials in Fortran90 on the CD; and the final part presents an introduction to LaTeX replete with sample files. Providing the essentials of computing, with practical examples, A First Course in Scientific Computing adheres to the principle that science and engineering students learn computation best while sitting in front of a computer, book in hand, in trial-and-error mode. Not only is it an invaluable learning text and an essential reference for students of mathematics, engineering, physics, and other sciences, but it is also a consummate model for future textbooks in computational science and engineering courses. A broad spectrum of computing tools and examples that can be used throughout an academic career Practical computing aimed at solving realistic problems Both symbolic and numerical computations A multidisciplinary approach: science + math + computer science Maple and Java in the book itself; Mathematica, Fortran90, Maple and Java on the accompanying CD in an interactive workbook format
Download or read book Numerical Methods in Scientific Computing written by Germund Dahlquist and published by SIAM. This book was released on 2008-01-01 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.
Download or read book John von Neumann and the Origins of Modern Computing written by William Aspray and published by MIT Press. This book was released on 1990-12-07 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Aspray provides the first broad and detailed account of von Neumann's many different contributions to computing. John von Neumann (1903-1957) was unquestionably one of the most brilliant scientists of the twentieth century. He made major contributions to quantum mechanics and mathematical physics and in 1943 began a new and all-too-short career in computer science. William Aspray provides the first broad and detailed account of von Neumann's many different contributions to computing. These, Aspray reveals, extended far beyond his well-known work in the design and construction of computer systems to include important scientific applications, the revival of numerical analysis, and the creation of a theory of computing.Aspray points out that from the beginning von Neumann took a wider and more theoretical view than other computer pioneers. In the now famous EDVAC report of 1945, von Neumann clearly stated the idea of a stored program that resides in the computer's memory along with the data it was to operate on. This stored program computer was described in terms of idealized neurons, highlighting the analogy between the digital computer and the human brain. Aspray describes von Neumann's development during the next decade, and almost entirely alone, of a theory of complicated information processing systems, or automata, and the introduction of themes such as learning, reliability of systems with unreliable components, self-replication, and the importance of memory and storage capacity in biological nervous systems; many of these themes remain at the heart of current investigations in parallel or neurocomputing.Aspray allows the record to speak for itself. He unravels an intricate sequence of stories generated by von Neumann's work and brings into focus the interplay of personalities centered about von Neumann. He documents the complex interactions of science, the military, and business and shows how progress in applied mathematics was intertwined with that in computers. William Aspray is Director of the Center for the History of Electrical Engineering at The Institute of Electrical and Electronics Engineers.
Download or read book Introduction to Scientific Computing written by Brigitte Lucquin and published by . This book was released on 1998-06-11 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the basic scientific computing methods for the solution of partial differential equations (PDEs) as they occur in engineering problems. Programming codes in Fortran and C are included for each problem. Opening with the definition of the programming environment for the solving of PDE systems, it then addresses in detail the programming of the model problem by the finite element method. Efficiency, compact storage pre-conditioning and mesh adaption are also presented. General elliptic problems and evolution problems are then dealt with. Finally, topics related to other numerical methods, algorithms for parallel computing and multi processor computers are detailed. An integrated software package which illustrates the featured programs of PDEs is available on the Internet via anonymous FTP. The methods presented have applications in numerous fields of engineering including shape optimisation, nuclear safety, heat transfer, acoustics, mechanics of fluids and elasticity, and are also relevant to other areas such as pollution, meteorology, biology, etc.
Download or read book Introduction to Scientific Computing and Data Analysis written by Mark H. Holmes and published by Springer Nature. This book was released on 2023-07-11 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides an introduction to numerical computing and its applications in science and engineering. The topics covered include those usually found in an introductory course, as well as those that arise in data analysis. This includes optimization and regression-based methods using a singular value decomposition. The emphasis is on problem solving, and there are numerous exercises throughout the text concerning applications in engineering and science. The essential role of the mathematical theory underlying the methods is also considered, both for understanding how the method works, as well as how the error in the computation depends on the method being used. The codes used for most of the computational examples in the text are available on GitHub. This new edition includes material necessary for an upper division course in computational linear algebra.
Download or read book Combinatorial Scientific Computing written by Uwe Naumann and published by CRC Press. This book was released on 2012-01-25 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial Scientific Computing explores the latest research on creating algorithms and software tools to solve key combinatorial problems on large-scale high-performance computing architectures. It includes contributions from international researchers who are pioneers in designing software and applications for high-performance computing systems. The book offers a state-of-the-art overview of the latest research, tool development, and applications. It focuses on load balancing and parallelization on high-performance computers, large-scale optimization, algorithmic differentiation of numerical simulation code, sparse matrix software tools, and combinatorial challenges and applications in large-scale social networks. The authors unify these seemingly disparate areas through a common set of abstractions and algorithms based on combinatorics, graphs, and hypergraphs. Combinatorial algorithms have long played a crucial enabling role in scientific and engineering computations and their importance continues to grow with the demands of new applications and advanced architectures. By addressing current challenges in the field, this volume sets the stage for the accelerated development and deployment of fundamental enabling technologies in high-performance scientific computing.
Download or read book Verification and Validation in Scientific Computing written by William L. Oberkampf and published by Cambridge University Press. This book was released on 2010-10-14 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.