Download or read book Computational Contact Mechanics written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2008-04-01 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.
Download or read book Introduction to Computational Contact Mechanics written by Alexander Konyukhov and published by John Wiley & Sons. This book was released on 2015-04-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Computational Contact Mechanics: A Geometrical Approach covers the fundamentals of computational contact mechanics and focuses on its practical implementation. Part one of this textbook focuses on the underlying theory and covers essential information about differential geometry and mathematical methods which are necessary to build the computational algorithm independently from other courses in mechanics. The geometrically exact theory for the computational contact mechanics is described in step-by-step manner, using examples of strict derivation from a mathematical point of view. The final goal of the theory is to construct in the independent approximation form /so-called covariant form, including application to high-order and isogeometric finite elements. The second part of a book is a practical guide for programming of contact elements and is written in such a way that makes it easy for a programmer to implement using any programming language. All programming examples are accompanied by a set of verification examples allowing the user to learn the research verification technique, essential for the computational contact analysis. Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis of contact problems Presents the geometrically exact theory for computational contact mechanics Describes algorithms used in well-known finite element software packages Describes modeling of forces as an inverse contact algorithm Includes practical exercises Contains unique verification examples such as the generalized Euler formula for a rope on a surface, and the impact problem and verification of thå percussion center Accompanied by a website hosting software Introduction to Computational Contact Mechanics: A Geometrical Approach is an ideal textbook for graduates and senior undergraduates, and is also a useful reference for researchers and practitioners working in computational mechanics.
Download or read book Introduction to Computational Contact Mechanics written by Alexander Konyukhov and published by John Wiley & Sons. This book was released on 2015-04-24 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Computational Contact Mechanics: A GeometricalApproach covers the fundamentals of computational contactmechanics and focuses on its practical implementation. Part one ofthis textbook focuses on the underlying theory and covers essentialinformation about differential geometry and mathematical methodswhich are necessary to build the computational algorithmindependently from other courses in mechanics. The geometricallyexact theory for the computational contact mechanics is describedin step-by-step manner, using examples of strict derivation from amathematical point of view. The final goal of the theory is toconstruct in the independent approximation form /so-calledcovariant form, including application to high-order andisogeometric finite elements. The second part of a book is a practical guide for programming ofcontact elements and is written in such a way that makes it easyfor a programmer to implement using any programming language. Allprogramming examples are accompanied by a set of verificationexamples allowing the user to learn the research verificationtechnique, essential for the computational contact analysis. Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis ofcontact problems Presents the geometrically exact theory for computationalcontact mechanics Describes algorithms used in well-known finite element softwarepackages Describes modeling of forces as an inverse contactalgorithm Includes practical exercises Contains unique verification examples such as the generalizedEuler formula for a rope on a surface, and the impact problem andverification of thå percussion center Accompanied by a website hosting software Introduction to Computational Contact Mechanics: A GeometricalApproach is an ideal textbook for graduates and seniorundergraduates, and is also a useful reference for researchers andpractitioners working in computational mechanics.
Download or read book Computational Contact Mechanics written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2006-10-06 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the valuable reference source for numerical simulations of contact mechanics suitable for many fields. These include civil engineering, car design, aeronautics, metal forming, or biomechanics. For this second edition, illustrative simplified examples and new discretisation schemes and adaptive procedures for coupled problems are added. This book is at the cutting edge of an area of significant and growing interest in computational mechanics.
Download or read book Recent Developments and Innovative Applications in Computational Mechanics written by Dana Mueller-Hoeppe and published by Springer Science & Business Media. This book was released on 2011-01-11 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift is dedicated to Professor Dr.-Ing. habil. Peter Wriggers on the occasion of his 60th birthday. It contains contributions from friends and collaborators as well as current and former PhD students from almost all continents. As a very diverse group of people, the authors cover a wide range of topics from fundamental research to industrial applications: contact mechanics, finite element technology, micromechanics, multiscale approaches, particle methods, isogeometric analysis, stochastic methods and further research interests. In summary, the volume presents an overview of the international state of the art in computational mechanics, both in academia and industry.
Download or read book Computational Contact and Impact Mechanics written by Tod A. Laursen and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical systems require the description of mechanical interaction across interfaces if they are to be successfully analyzed. Examples in the engineered world range from the design of prosthetics in biomedical engi neering (e. g. , hip replacements); to characterization of the response and durability of head/disk interfaces in computer magnetic storage devices; to development of pneumatic tires with better handling characteristics and increased longevity in automotive engineering; to description of the adhe sion and/or relative slip between concrete and reinforcing steel in structural engineering. Such mechanical interactions, often called contact/impact in teractions, usually necessitate at minimum the determination of areas over which compressive pressures must act to prevent interpenetration of the mechanical entities involved. Depending on the application, frictional be havior, transient interaction of interfaces with their surroundings (e. g. , in termittent stick/slip), thermo-mechanical coupling, interaction with an in tervening lubricant and/or fluid layer, and damage of the interface (i. e. , wear) may also be featured. When taken together (or even separately!), these features have the effect of making the equations of mechanical evolu tion not only highly nonlinear, but highly nonsmooth as well. While many modern engineering simulation packages possess impressive capabilities in the general area of nonlinear mechanics, it can be contended that methodologies typically utilized for contact interactions are relatively immature in comparison to other components of a nonlinear finite element package, such as large deformation kinematics, inelastic material modeling, nonlinear equation solving, or linear solver technology.
Download or read book Computational Granular Mechanics and Its Engineering Applications written by Shunying Ji and published by Springer. This book was released on 2020-05-08 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically introduces readers to computational granular mechanics and its relative engineering applications. Part I describes the fundamentals, such as the generation of irregular particle shapes, contact models, macro-micro theory, DEM-FEM coupling, and solid-fluid coupling of granular materials. It also discusses the theory behind various numerical methods developed in recent years. Further, it provides the GPU-based parallel algorithm to guide the programming of DEM and examines commercial and open-source codes and software for the analysis of granular materials. Part II focuses on engineering applications, including the latest advances in sea-ice engineering, railway ballast dynamics, and lunar landers. It also presents a rational method of parameter calibration and thorough analyses of DEM simulations, which illustrate the capabilities of DEM. The computational mechanics method for granular materials can be applied widely in various engineering fields, such as rock and soil mechanics, ocean engineering and chemical process engineering.
Download or read book Geometry of Surfaces written by Stephen P. Radzevich and published by John Wiley & Sons. This book was released on 2013-01-04 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an in-depth analysis of geometry of part surfaces and provides the tools for solving complex engineering problems Geometry of Surfaces: A Practical Guide for Mechanical Engineers is a comprehensive guide to applied geometry of surfaces with focus on practical applications in various areas of mechanical engineering. The book is divided into three parts on Part Surfaces, Geometry of Contact of Part Surfaces and Mapping of the Contacting Part Surfaces. Geometry of Surfaces: A Practical Guide for Mechanical Engineers combines differential geometry and gearing theory and presents new developments in the elementary theory of enveloping surfaces. Written by a leading expert of the field, this book also provides the reader with the tools for solving complex engineering problems in the field of mechanical engineering. Presents an in-depth analysis of geometry of part surfaces Provides tools for solving complex engineering problems in the field of mechanical engineering Combines differential geometry and gearing theory Highlights new developments in the elementary theory of enveloping surfaces Essential reading for researchers and practitioners in mechanical, automotive and aerospace engineering industries; CAD developers; and graduate students in Mechanical Engineering.
Download or read book Nonlinear Solid Mechanics written by Gerhard A. Holzapfel and published by . This book was released on 2000-04-06 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a modern and comprehensive coverage of continuum mechanics, this volume includes information on "variational principles"--Significant, as this is the only method by which such material is actually utilized in engineering practice.
Download or read book Computational Contact Mechanics written by Alexander Konyukhov and published by Springer Science & Business Media. This book was released on 2012-08-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.
Download or read book IUTAM Symposium on Computational Methods in Contact Mechanics written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2007-11-20 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the IUTAM Symposium held in Hanover, Germany, in November 2006. Coverage includes new mathematical techniques, new discretization techniques, advanced applications of unilateral contact to masonry structures, decohesion analysis and tractive rolling of tires. The book provides a good overview of modern techniques and state-of-the-art discretizations schemes applied in contact mechanics.
Download or read book Continuum Mechanics for Engineers written by G. Thomas Mase and published by CRC Press. This book was released on 2020-05-01 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bestselling textbook in its first three editions, Continuum Mechanics for Engineers, Fourth Edition provides engineering students with a complete, concise, and accessible introduction to advanced engineering mechanics. It provides information that is useful in emerging engineering areas, such as micro-mechanics and biomechanics. Through a mastery of this volume’s contents and additional rigorous finite element training, readers will develop the mechanics foundation necessary to skillfully use modern, advanced design tools. Features: Provides a basic, understandable approach to the concepts, mathematics, and engineering applications of continuum mechanics Updated throughout, and adds a new chapter on plasticity Features an expanded coverage of fluids Includes numerous all new end-of-chapter problems With an abundance of worked examples and chapter problems, it carefully explains necessary mathematics and presents numerous illustrations, giving students and practicing professionals an excellent self-study guide to enhance their skills.
Download or read book Introduction to Computational Materials Science written by Richard LeSar and published by Cambridge University Press. This book was released on 2013-03-28 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.
Download or read book Current Trends and Open Problems in Computational Mechanics written by Fadi Aldakheel and published by Springer Nature. This book was released on 2022-03-12 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift is dedicated to Professor Dr.-Ing. habil. Peter Wriggers on the occasion of his 70th birthday. Thanks to his high dedication to research, over the years Peter Wriggers has built an international network with renowned experts in the field of computational mechanics. This is proven by the large number of contributions from friends and collaborators as well as former PhD students from all over the world. The diversity of Peter Wriggers network is mirrored by the range of topics that are covered by this book. To name only a few, these include contact mechanics, finite & virtual element technologies, micromechanics, multiscale approaches, fracture mechanics, isogeometric analysis, stochastic methods, meshfree and particle methods. Applications of numerical simulation to specific problems, e.g. Biomechanics and Additive Manufacturing is also covered. The volume intends to present an overview of the state of the art and current trends in computational mechanics for academia and industry.
Download or read book Computational Engineering written by Peter Debney and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Mechanics of Solids written by Allan F. Bower and published by CRC Press. This book was released on 2009-10-05 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Download or read book Modeling and Simulation of Tribological Problems in Technology written by Marco Paggi and published by Springer. This book was released on 2019-06-26 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book conveys, in a self-contained manner, the fundamental concepts for classifying types of contact, the essential mathematical methods for the formulation of contact problems, and the numerical methods required for their solution. In addition to the methodologies, it covers a broad range of applications, including contact problems in mechanical engineering, microelectronics and nanomechanics. All chapters provide both substantial background on the theory and numerical methods, and in-depth treatments of cutting-edge research topics and applications. The book is primarily intended for doctoral students of applied mathematics, mechanics, engineering and physics with a strong interest in the theoretical modelling, numerical simulation and experimental characterization of contact problems in technology. It will also benefit researchers in the above mentioned and neighbouring fields working in academia or at private research and development centres who are interested in a concise yet comprehensive overview of contact mechanics, from its fundamental mathematical background, to the computational methods and the experimental techniques currently available for the solution of contact problems.