EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Finite Element Simulation of Contaminant Transport in Porous Media

Download or read book A Finite Element Simulation of Contaminant Transport in Porous Media written by Mohamed Aboufirassi and published by . This book was released on 1977 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Groundwater Flow and Contaminant Transport

Download or read book Modeling Groundwater Flow and Contaminant Transport written by Jacob Bear and published by Springer Science & Business Media. This book was released on 2010-01-18 with total page 851 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use, and contamination. To face the challenge, good planning and management practices are needed. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface. The purpose of this book is to construct conceptual and mathematical models that can provide the information required for making decisions associated with the management of groundwater resources, and the remediation of contaminated aquifers. The basic approach of this book is to accurately describe the underlying physics of groundwater flow and solute transport in heterogeneous porous media, starting at the microscopic level, and to rigorously derive their mathematical representation at the macroscopic levels. The well-posed, macroscopic mathematical models are formulated for saturated, single phase flow, as well as for unsaturated and multiphase flow, and for the transport of single and multiple chemical species. Numerical models are presented and computer codes are reviewed, as tools for solving the models. The problem of seawater intrusion into coastal aquifers is examined and modeled. The issues of uncertainty in model input data and output are addressed. The book concludes with a chapter on the management of groundwater resources. Although one of the main objectives of this book is to construct mathematical models, the amount of mathematics required is kept minimal.

Book Contaminant Transport Modeling Through Saturated Porous Media

Download or read book Contaminant Transport Modeling Through Saturated Porous Media written by Anand M. Hulagabali and published by LAP Lambert Academic Publishing. This book was released on 2014-03 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Groundwater quality varies due to the chemical, geochemical, and biochemical reactions of the pollutants in the subsurface flow systems. To reliably predict the fate of contaminant transport in groundwater, an accurate numerical modeling is required. Analytical and numerical simulation models help civil engineering to understand the physical and chemical processes that influence contaminant transport through a saturated soil layer, including advective and dispersive transport as well as sorption.In the present investigation, An attempt has been made to provide a simple but sufficiently accurate methodology for numerical simulation of the one, two and three dimensional contaminant transport through the saturated homogeneous porous media and landfill liners using Finite Element method. Exercise was undertaken to determine the rate of movement of contaminants from landfill, so as to arrive at expected future concentrations of contaminants in the groundwater around landfill. Systematic study conducted to determine the impact of municipal solid waste disposal at Bhalaswa landfill Site in New Delhi has reveled that the groundwater is being significantly contaminated due to the leachate.

Book NUMERICAL MODELING OF CONTAMINANT TRANSPORT IN FRACTURED POROUS MEDIA USING MIXED FINITE ELEMENT AND FINITE VOLUME METHODS

Download or read book NUMERICAL MODELING OF CONTAMINANT TRANSPORT IN FRACTURED POROUS MEDIA USING MIXED FINITE ELEMENT AND FINITE VOLUME METHODS written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The finite volume method and the standard MFE method are used to approximate the convection and dispersion terms respectively. The model is used to investigate the interaction of adsorption with transport and to extract information on effective adsorption distribution coefficients. Numerical examples in different fractured media illustrate the robustness and efficiency of the proposed numerical model.

Book A Three dimensional Galerkin Finite Element Model for the Analysis of Contaminant Transport in Variably Saturated Porous Media

Download or read book A Three dimensional Galerkin Finite Element Model for the Analysis of Contaminant Transport in Variably Saturated Porous Media written by G. Ségol and published by . This book was released on 1976 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book FEFLOW

    Book Details:
  • Author : Hans-Jörg G. Diersch
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-22
  • ISBN : 364238739X
  • Pages : 1018 pages

Download or read book FEFLOW written by Hans-Jörg G. Diersch and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt: FEFLOW is an acronym of Finite Element subsurface FLOW simulation system and solves the governing flow, mass and heat transport equations in porous and fractured media by a multidimensional finite element method for complex geometric and parametric situations including variable fluid density, variable saturation, free surface(s), multispecies reaction kinetics, non-isothermal flow and multidiffusive effects. FEFLOW comprises theoretical work, modeling experiences and simulation practice from a period of about 40 years. In this light, the main objective of the present book is to share this achieved level of modeling with all required details of the physical and numerical background with the reader. The book is intended to put advanced theoretical and numerical methods into the hands of modeling practitioners and scientists. It starts with a more general theory for all relevant flow and transport phenomena on the basis of the continuum approach, systematically develops the basic framework for important classes of problems (e.g., multiphase/multispecies non-isothermal flow and transport phenomena, discrete features, aquifer-averaged equations, geothermal processes), introduces finite-element techniques for solving the basic balance equations, in detail discusses advanced numerical algorithms for the resulting nonlinear and linear problems and completes with a number of benchmarks, applications and exercises to illustrate the different types of problems and ways to tackle them successfully (e.g., flow and seepage problems, unsaturated-saturated flow, advective-diffusion transport, saltwater intrusion, geothermal and thermohaline flow).

Book Advances in Transport Phenomena in Porous Media

Download or read book Advances in Transport Phenomena in Porous Media written by Jacob Bear and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the lectures presented at the NATO ADVANCED STUDY INSTITUTE that took place at Newark, Delaware, U. S. A. , July 14-23, 1985. The objective of this meeting was to present and discuss selected topics associated with transport phenomena in porous media. By their very nature, porous media and phenomena of transport of extensive quantities that take place in them, are very complex. The solid matrix may be rigid, or deformable (elastically, or following some other constitutive relation), the void space may be occupied by one or more fluid phases. Each fluid phase may be composed of more than one component, with the various components capable of interacting among themselves and/or with the solid matrix. The transport process may be isothermal or non-isothermal, with or without phase changes. Porous medium domains in which extensive quantities, such as mass of a fluid phase, component of a fluid phase, or heat of the porous medium as a whole, are being transported occur in the practice in a variety of disciplines.

Book Flow in Porous Media

    Book Details:
  • Author : J. Douglas
  • Publisher : Birkhäuser
  • Release : 2012-12-06
  • ISBN : 3034885644
  • Pages : 180 pages

Download or read book Flow in Porous Media written by J. Douglas and published by Birkhäuser. This book was released on 2012-12-06 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Jim Douglas, Jr.' These proceedings reflect some of the thoughts expressed at the Oberwolfach Con ference on Porous Media held June 21-27, 1992, organized by Jim Douglas, Jr., Ulrich Hornung, and Cornelius J, van Duijn. Forty-five scientists attended the conference, and about thirty papers were presented. Fourteen manuscripts were submitted for the proceedings and are incorporated in this volume; they cover a number of aspects of flow and transport in porous media. Indeed, there are 223 individual references in the fourteen papers, but fewer than fifteen are cited in more than one paper. The papers appear in alphabetical order (on the basis of the first author). A brief introduction to each paper is given below. Allen and Curran consider a variety of questions related to the simulation of ground water contamination. Accurate water velocities are essential for acceptable results, and the authors apply mixed finite elements to the pressure equation to obtain these ve locities. Since fine grids are required to resolve heterogenei ties, standard iterative procedures are too slow for practical simulation; the authors introduce a parallelizable, multigrid-based it.erative scheme for the lowest order Raviart-Thomas mixed method. Contaminant transport is approximated through a finite element collocation procedure, and an alternating-direction, modified method of characteristics technique is employed to time-step the simulation. Computational experiments carried out on an nCube 2 computer.

Book On Some Problems in the Simulation of Flow and Transport Through Porous Media

Download or read book On Some Problems in the Simulation of Flow and Transport Through Porous Media written by Sunil George Thomas and published by . This book was released on 2009 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dynamic solution of multiphase flow through porous media is of special interest to several fields of science and engineering, such as petroleum, geology and geophysics, bio-medical, civil and environmental, chemical engineering and many other disciplines. A natural application is the modeling of the flow of two immiscible fluids (phases) in a reservoir. Others, that are broadly based and considered in this work include the hydrodynamic dispersion (as in reactive transport) of a solute or tracer chemical through a fluid phase. Reservoir properties like permeability and porosity greatly influence the flow of these phases. Often, these vary across several orders of magnitude and can be discontinuous functions. Furthermore, they are generally not known to a desired level of accuracy or detail and special inverse problems need to be solved in order to obtain their estimates. Based on the physics dominating a given sub-region of the porous medium, numerical solutions to such flow problems may require different discretization schemes or different governing equations in adjacent regions. The need to couple solutions to such schemes gives rise to challenging domain decomposition problems. Finally, on an application level, present day environment concerns have resulted in a widespread increase in CO2 capture and storage experiments across the globe. This presents a huge modeling challenge for the future. This research work is divided into sections that aim to study various inter-connected problems that are of significance in sub-surface porous media applications. The first section studies an application of mortar (as well as nonmortar, i.e., enhanced velocity) mixed finite element methods (MMFEM and EV-MFEM) to problems in porous media flow. The mortar spaces are first used to develop a multiscale approach for parabolic problems in porous media applications. The implementation of the mortar mixed method is presented for two-phase immiscible flow and some a priori error estimates are then derived for the case of slightly compressible single-phase Darcy flow. Following this, the problem of modeling flow coupled to reactive transport is studied. Applications of such problems include modeling bio-remediation of oil spills and other subsurface hazardous wastes, angiogenesis in the transition of tumors from a dormant to a malignant state, contaminant transport in groundwater flow and acid injection around well bores to increase the permeability of the surrounding rock. Several numerical results are presented that demonstrate the efficiency of the method when compared to traditional approaches. The section following this examines (non-mortar) enhanced velocity finite element methods for solving multiphase flow coupled to species transport on non-matching multiblock grids. The results from this section indicate that this is the recommended method of choice for such problems. Next, a mortar finite element method is formulated and implemented that extends the scope of the classical mortar mixed finite element method developed by Arbogast et al (12) for elliptic problems and Girault et al (62) for coupling different numerical discretization schemes. Some significant areas of application include the coupling of pore-scale network models with the classical continuum models for steady single-phase Darcy flow as well as the coupling of different numerical methods such as discontinuous Galerkin and mixed finite element methods in different sub-domains for the case of single phase flow (21, 109). These hold promise for applications where a high level of detail and accuracy is desired in one part of the domain (often associated with very small length scales as in pore-scale network models) and a much lower level of detail at other parts of the domain (at much larger length scales). Examples include modeling of the flow around well bores or through faulted reservoirs. The next section presents a parallel stochastic approximation method (68, 76) applied to inverse modeling and gives several promising results that address the problem of uncertainty associated with the parameters governing multiphase flow partial differential equations. For example, medium properties such as absolute permeability and porosity greatly influence the flow behavior, but are rarely known to even a reasonable level of accuracy and are very often upscaled to large areas or volumes based on seismic measurements at discrete points. The results in this section show that by using a few measurements of the primary unknowns in multiphase flow such as fluid pressures and concentrations as well as well-log data, one can define an objective function of the medium properties to be determined, which is then minimized to determine the properties using (as in this case) a stochastic analog of Newton's method. The last section is devoted to a significant and current application area. It presents a parallel and efficient iteratively coupled implicit pressure, explicit concentration formulation (IMPEC) (52-54) for non-isothermal compositional flow problems. The goal is to perform predictive modeling simulations for CO2 sequestration experiments. While the sections presented in this work cover a broad range of topics they are actually tied to each other and serve to achieve the unifying, ultimate goal of developing a complete and robust reservoir simulator. The major results of this work, particularly in the application of MMFEM and EV-MFEM to multiphysics couplings of multiphase flow and transport as well as in the modeling of EOS non-isothermal compositional flow applied to CO2 sequestration, suggest that multiblock/multimodel methods applied in a robust parallel computational framework is invaluable when attempting to solve problems as described in Chapter 7. As an example, one may consider a closed loop control system for managing oil production or CO2 sequestration experiments in huge formations (the "instrumented oil field"). Most of the computationally costly activity occurs around a few wells. Thus one has to be able to seamlessly connect the above components while running many forward simulations on parallel clusters in a multiblock and multimodel setting where most domains employ an isothermal single-phase flow model except a few around well bores that employ, say, a non-isothermal compositional model. Simultaneously, cheap and efficient stochastic methods as in Chapter 8, may be used to generate history matches of well and/or sensor-measured solution data, to arrive at better estimates of the medium properties on the fly. This is obviously beyond the scope of the current work but represents the over-arching goal of this research.

Book Finite Element Simulation in Surface and Subsurface Hydrology

Download or read book Finite Element Simulation in Surface and Subsurface Hydrology written by George F. Pinder and published by Elsevier. This book was released on 2013-09-03 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite Element Simulation in Surface and Subsurface Hydrology provides an introduction to the finite element method and how the method is applied to problems in surface and subsurface hydrology. The book presents the basic concepts of the numerical methods and the finite element approach; applications to problems on groundwater flow and mass and energy transport; and applications to problems that involve surface water dynamics. Computational methods for the solution of differential equations; classification of partial differential equations; finite difference and weighted residual integral techniques; and The Galerkin finite element method are discussed as well. The text will be of value to engineers, hydrologists, and students in the field of engineering.

Book Pamphlets on Terrorism

Download or read book Pamphlets on Terrorism written by and published by . This book was released on 1900 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Deterministic probabilistic Model for Contaminant Transport

Download or read book A Deterministic probabilistic Model for Contaminant Transport written by Franklin W. Schwartz and published by . This book was released on 1980 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Contaminant Transport in Groundwater

Download or read book Contaminant Transport in Groundwater written by H.E. Kobus and published by CRC Press. This book was released on 1989-01-01 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceeding of a symposium on Contaminant transport in groundwater held in Stuttgart, April 1989. Topics covered include: Field methods & data processing; Field studies & tracer experiments; Contaminant chemistry & column experiments; Modelling of chemistry coupled to transport; Dispersion theory & transport in fractured media; Numerical aspects of modelling, parameter identification & optimization; Multiphase flow & transport in saturated soil.