EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Element Based Galerkin Methods on Tensor Product Bases

Download or read book An Introduction to Element Based Galerkin Methods on Tensor Product Bases written by Francis X. Giraldo and published by Springer Nature. This book was released on 2020-10-30 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations.

Book Nodal Discontinuous Galerkin Methods

Download or read book Nodal Discontinuous Galerkin Methods written by Jan S. Hesthaven and published by Springer Science & Business Media. This book was released on 2007-12-18 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.

Book Runge Kutta Discontinuous Galerkin Methods for Convection dominated Problems

Download or read book Runge Kutta Discontinuous Galerkin Methods for Convection dominated Problems written by Bernardo Cockburn and published by . This book was released on 2000 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Discontinuous Galerkin Methods

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Book Chebyshev and Fourier Spectral Methods

Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2001-12-03 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

Book Partial Differential Equations and Boundary Value Problems with Applications

Download or read book Partial Differential Equations and Boundary Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Book Additive Runge Kutta Schemes for Convection diffusion reaction Equations

Download or read book Additive Runge Kutta Schemes for Convection diffusion reaction Equations written by Christopher Alan Kennedy and published by . This book was released on 2001 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N=2, additive Runge-Kutta ARK methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK methods have vanishing stability functions for very large values of the stiff scaled eigenvalue and retain high stability efficiency in the absence of stiffness.

Book Automated Solution of Differential Equations by the Finite Element Method

Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Book I do like CFD  VOL 1  Second Edition

Download or read book I do like CFD VOL 1 Second Edition written by Katate Masatsuka and published by Lulu.com. This book was released on 2009-02-11 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Version 2.9 (May. 2024): This is a unique and highly technical book on Computational Fluid Dynamics (CFD). The first half talks about mathematical foundations and governing equations ranging from simple model equations (advection/diffusion, Euler-Tricomi, Cauchy-Riemann, Burgers, etc.) used for algorithm development to the incompressible/compressible Euler and Navier-Stokes equations in various forms with complete Jacobians and eigen-structures in 1, 2, and 3 dimensions. The other half talks about general methods for deriving exact solutions (separation of variables, transformation, superposition, etc.) and numerous exact solutions that can be readily used for accuracy verification of a CFD code (Ringleb's flow, Fraenkel's flow, boundary layer, viscous shock structure, etc.). This book can be a very useful resource for students studying basics of CFD as well as researchers/practitioners in CFD. - PDF version is available at cfdbooks.com. [Note: PDF does not contain some contents of the Printed version.]

Book Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Download or read book Numerical Methods for Elliptic and Parabolic Partial Differential Equations written by Peter Knabner and published by Springer Science & Business Media. This book was released on 2003-06-26 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Book Godunov Methods

    Book Details:
  • Author : E.F. Toro
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461506638
  • Pages : 1050 pages

Download or read book Godunov Methods written by E.F. Toro and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1050 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford in October 1999, to commemo rate the 70th birthday of the Russian mathematician Sergei K. Godunov. The meeting enjoyed the participation of 140 scientists from 20 countries; one of the participants commented: everyone is here, meaning that virtu ally everybody who had made a significant contribution to the general area of numerical methods for hyperbolic conservation laws, along the lines first proposed by Godunov in the fifties, was present at the meeting. Sadly, there were important absentees, who due to personal circumstance could not at tend this very exciting gathering. The central theme o{ the meeting, and of this book, was numerical methods for hyperbolic conservation laws fol lowing Godunov's key ideas contained in his celebrated paper of 1959. But Godunov's contributions to science are not restricted to Godunov's method.

Book Numerical Solution of Differential Equations

Download or read book Numerical Solution of Differential Equations written by Zhilin Li and published by Cambridge University Press. This book was released on 2017-11-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.

Book Solving PDEs in Python

    Book Details:
  • Author : Hans Petter Langtangen
  • Publisher : Springer
  • Release : 2017-03-21
  • ISBN : 3319524623
  • Pages : 152 pages

Download or read book Solving PDEs in Python written by Hans Petter Langtangen and published by Springer. This book was released on 2017-03-21 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

Book Spectral Methods

    Book Details:
  • Author : Jie Shen
  • Publisher : Springer Science & Business Media
  • Release : 2011-08-25
  • ISBN : 3540710418
  • Pages : 481 pages

Download or read book Spectral Methods written by Jie Shen and published by Springer Science & Business Media. This book was released on 2011-08-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.

Book Computational Differential Equations

Download or read book Computational Differential Equations written by Kenneth Eriksson and published by Cambridge University Press. This book was released on 1996-09-05 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on computational mathematics is based on a fusion of mathematical analysis, numerical computation and applications.

Book Spectral hp Element Methods for Computational Fluid Dynamics

Download or read book Spectral hp Element Methods for Computational Fluid Dynamics written by George Karniadakis and published by American Chemical Society. This book was released on 2013-01-10 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revision of: Spectral/hp element methods for CFD. 1999.

Book Partial Differential Equations and the Finite Element Method

Download or read book Partial Differential Equations and the Finite Element Method written by Pavel Ŝolín and published by John Wiley & Sons. This book was released on 2005-12-16 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.