EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Direct Finite Difference Method for Optimal Control Problems

Download or read book A Direct Finite Difference Method for Optimal Control Problems written by Charles D. Fournier and published by . This book was released on 1970 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: The paper describes an approximate numerical method for solution of optimal control problems. It is called a direct method because it deals directly with the functional to be optimized. The approach is based on the Rayleigh-Ritz method for problems in the calculus of variations. It reduces the determination of an optimal control to the solution of a set of simultaneous algebraic equations. Use of a modified Newton algorithm makes it possible to solve these equations rapidly with a relatively small amount of computer memory. The method is illustrated by application to linear and nonlinear problems of optimal operation of chemical reactors. (Author).

Book Finite Element Error Analysis for PDE constrained Optimal Control Problems

Download or read book Finite Element Error Analysis for PDE constrained Optimal Control Problems written by Dieter Sirch and published by Logos Verlag Berlin GmbH. This book was released on 2010 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subject of this work is the analysis of numerical methods for the solution of optimal control problems governed by elliptic partial differential equations. Such problems arise, if one does not only want to simulate technical or physical processes but also wants to optimize them with the help of one or more influence variables. In many practical applications these influence variables, so called controls, cannot be chosen arbitrarily, but have to fulfill certain inequality constraints. The numerical treatment of such control constrained optimal control problems requires a discretization of the underlying infinite dimensional function spaces. To guarantee the quality of the numerical solution one has to estimate and to quantify the resulting approximation errors. In this thesis a priori error estimates for finite element discretizations are proved in case of corners or edges in the underlying domain and nonsmooth coefficients in the partial differential equation. These facts influence the regularity properties of the solution and require adapted meshes to get optimal convergence rates. Isotropic and anisotropic refinement strategies are given and error estimates in polygonal and prismatic domains are proved. The theoretical results are confirmed by numerical tests.

Book A Finite Difference Technique for Solving Optimization Problems Governed by Linear Functional Differential Equations

Download or read book A Finite Difference Technique for Solving Optimization Problems Governed by Linear Functional Differential Equations written by Douglas C. Reber and published by . This book was released on 1978 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aspects of the approximation and optimal control of systems governed by linear retarded nonautonomous functional differential equations (FDE) are considered. First, certain FDE are shown to be equivalent to corresponding abstract ordinary differential equations (ODE). Next, it is demonstrated that these abstract ODE may be approximated by difference equations in finite dimensional spaces. The optimal control problem for systems governed by FDE is then reduced to a sequence of mathematical programming problems. Finally, numerical results for two examples are presented and discussed. (Author).

Book Practical Methods for Optimal Control Using Nonlinear Programming  Third Edition

Download or read book Practical Methods for Optimal Control Using Nonlinear Programming Third Edition written by John T. Betts and published by SIAM. This book was released on 2020-07-09 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: How do you fly an airplane from one point to another as fast as possible? What is the best way to administer a vaccine to fight the harmful effects of disease? What is the most efficient way to produce a chemical substance? This book presents practical methods for solving real optimal control problems such as these. Practical Methods for Optimal Control Using Nonlinear Programming, Third Edition focuses on the direct transcription method for optimal control. It features a summary of relevant material in constrained optimization, including nonlinear programming; discretization techniques appropriate for ordinary differential equations and differential-algebraic equations; and several examples and descriptions of computational algorithm formulations that implement this discretize-then-optimize strategy. The third edition has been thoroughly updated and includes new material on implicit Runge–Kutta discretization techniques, new chapters on partial differential equations and delay equations, and more than 70 test problems and open source FORTRAN code for all of the problems. This book will be valuable for academic and industrial research and development in optimal control theory and applications. It is appropriate as a primary or supplementary text for advanced undergraduate and graduate students.

Book Practical Methods for Optimal Control and Estimation Using Nonlinear Programming

Download or read book Practical Methods for Optimal Control and Estimation Using Nonlinear Programming written by John T. Betts and published by SIAM. This book was released on 2010-01-01 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: A focused presentation of how sparse optimization methods can be used to solve optimal control and estimation problems.

Book Symplectic Pseudospectral Methods for Optimal Control

Download or read book Symplectic Pseudospectral Methods for Optimal Control written by Xinwei Wang and published by Springer Nature. This book was released on 2020-10-16 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on symplectic pseudospectral methods for nonlinear optimal control problems and their applications. Both the fundamental principles and engineering practice are addressed. Symplectic pseudospectral methods for nonlinear optimal control problems with complicated factors (i.e., inequality constraints, state-delay, unspecific terminal time, etc.) are solved under the framework of indirect methods. The methods developed here offer a high degree of computational efficiency and accuracy when compared with popular direct pseudospectral methods. The methods are applied to solve optimal control problems arising in various engineering fields, particularly in path planning problems for autonomous vehicles. Given its scope, the book will benefit researchers, engineers and graduate students in the fields of automatic control, path planning, ordinary differential equations, etc.

Book Finite Difference Methods  Theory and Applications

Download or read book Finite Difference Methods Theory and Applications written by Ivan Dimov and published by Springer. This book was released on 2019-01-28 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed conference proceedings of the 7th International Conference on Finite Difference Methods, FDM 2018, held in Lozenetz, Bulgaria, in June 2018.The 69 revised full papers presented together with 11 invited papers were carefully reviewed and selected from 94 submissions. They deal with many modern and new numerical techniques like splitting techniques, Green’s function method, multigrid methods, and immersed interface method.

Book Exact Finite Difference Schemes

Download or read book Exact Finite Difference Schemes written by Sergey Lemeshevsky and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-09-26 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations. Contents: Basic notation Preliminary results Hyperbolic equations Parabolic equations Use of exact difference schemes to construct NSFD discretizations of differential equations Exact and truncated difference schemes for boundary-value problem Exact difference schemes for stochastic differential equations Numerical blow-up time Bibliography

Book Finite Difference Methods Theory and Applications

Download or read book Finite Difference Methods Theory and Applications written by Ivan Dimov and published by Springer. This book was released on 2015-06-16 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Finite Difference Methods, FDM 2014, held in Lozenetz, Bulgaria, in June 2014. The 36 revised full papers were carefully reviewed and selected from 62 submissions. These papers together with 12 invited papers cover topics such as finite difference and combined finite difference methods as well as finite element methods and their various applications in physics, chemistry, biology and finance.

Book Finite Difference and Discontinuous Galerkin Finite Element Methods for Fully Nonlinear Second Order Partial Differential Equations

Download or read book Finite Difference and Discontinuous Galerkin Finite Element Methods for Fully Nonlinear Second Order Partial Differential Equations written by Thomas Lee Lewis and published by . This book was released on 2013 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dissertation focuses on numerically approximating viscosity solutions to second order fully nonlinear partial differential equations (PDEs). The primary goals of the dissertation are to develop, analyze, and implement a finite difference (FD) framework, a local discontinuous Galerkin (LDG) framework, and an interior penalty discontinuous Galerkin (IPDG) framework for directly approximating viscosity solutions of fully nonlinear second order elliptic PDE problems with Dirichlet boundary conditions. The developed frameworks are also extended to fully nonlinear second order parabolic PDEs. All of the proposed direct methods are tested using Monge-Ampere problems and Hamilton-Jacobi-Bellman (HJB) problems. Due to the significance of HJB problems in relation to stochastic optimal control, an indirect methodology for approximating HJB problems that takes advantage of the inherent structure of HJB equations is also developed. First, a FD framework is developed that guarantees convergence to viscosity solutions when certain properties concerning admissibility, stability, consistency, and monotonicity are satisfied. The key concepts introduced are numerical operators, numerical moments, and generalized monotonicity. One class of FD methods that fulfills the framework provides a direct realization of the vanishing moment method for approximating second order fully nonlinear PDEs. Next, the emphasis is on extending the FD framework using DG methodologies. In particular, some nonstandard LDG and IPDG methods that utilize key concepts from the FD framework are formulated. Benefits of the DG methodologies over the FD methodology include the ability to handle more complicated domains, more freedom in the design of meshes, higher potential for adaptivity, and the ability to use high order elements as a means for increased accuracy. Last, a class of indirect methods for approximating HJB equations using the vanishing moment method paired with a splitting formulation of the HJB problem is developed and tested numerically. The proposed methodology is well-suited for both continuous and discontinuous Galerkin methods, and it complements the direct methods developed in the dissertation.

Book Numerical Solution of Differential Equations

Download or read book Numerical Solution of Differential Equations written by Zhilin Li and published by Cambridge University Press. This book was released on 2017-11-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.

Book Optimal Control of Partial Differential Equations

Download or read book Optimal Control of Partial Differential Equations written by Fredi Tröltzsch and published by American Mathematical Society. This book was released on 2024-03-21 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tröltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.

Book Generalized Difference Methods for Differential Equations

Download or read book Generalized Difference Methods for Differential Equations written by Ronghua Li and published by CRC Press. This book was released on 2000-01-03 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a comprehensive mathematical theory for elliptic, parabolic, and hyperbolic differential equations. It compares finite element and finite difference methods and illustrates applications of generalized difference methods to elastic bodies, electromagnetic fields, underground water pollution, and coupled sound-heat flows.

Book Optimal Control of PDEs under Uncertainty

Download or read book Optimal Control of PDEs under Uncertainty written by Jesús Martínez-Frutos and published by Springer. This book was released on 2018-08-30 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a direct and comprehensive introduction to theoretical and numerical concepts in the emerging field of optimal control of partial differential equations (PDEs) under uncertainty. The main objective of the book is to offer graduate students and researchers a smooth transition from optimal control of deterministic PDEs to optimal control of random PDEs. Coverage includes uncertainty modelling in control problems, variational formulation of PDEs with random inputs, robust and risk-averse formulations of optimal control problems, existence theory and numerical resolution methods. The exposition focusses on the entire path, starting from uncertainty modelling and ending in the practical implementation of numerical schemes for the numerical approximation of the considered problems. To this end, a selected number of illustrative examples are analysed in detail throughout the book. Computer codes, written in MatLab, are provided for all these examples. This book is adressed to graduate students and researches in Engineering, Physics and Mathematics who are interested in optimal control and optimal design for random partial differential equations.

Book Finite Difference Computing with PDEs

Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Book Computational Methods In The Fractional Calculus Of Variations

Download or read book Computational Methods In The Fractional Calculus Of Variations written by Ricardo Almeida and published by World Scientific Publishing Company. This book was released on 2015-03-19 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills a gap in the literature by introducing numerical techniques to solve problems of fractional calculus of variations (FCV). In most cases, finding the analytic solution to such problems is extremely difficult or even impossible, and numerical methods need to be used.The authors are well-known researchers in the area of FCV and the book contains some of their recent results, serving as a companion volume to Introduction to the Fractional Calculus of Variations by A B Malinowska and D F M Torres, where analytical methods are presented to solve FCV problems. After some preliminaries on the subject, different techniques are presented in detail with numerous examples to help the reader to better understand the methods. The techniques presented may be used not only to deal with FCV problems but also in other contexts of fractional calculus, such as fractional differential equations and fractional optimal control. It is suitable as an advanced book for graduate students in mathematics, physics and engineering, as well as for researchers interested in fractional calculus.

Book Efficient Algorithms for Solving Hamilton Jacobi Bellman Equations

Download or read book Efficient Algorithms for Solving Hamilton Jacobi Bellman Equations written by Hamood Amur Hamood Alwardi and published by . This book was released on 2010 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis addresses the construction of some algorithms for numerically solving optimal feedback control problems. Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. More precisely, optimal control problems involve a dynamic system with input quantities, called controls, and some quantity, called cost, to be minimized. An optimal control is a set of differential equations describing the paths of the control variables that optimise the cost. Finding solutions to problems of this nature involves a significantly high degree of difficulty in terms of cost and power compared with the related task of solving optimal open-loop control problems. Moreover, stability is a major problem in the feedback control problem, which may tend to overcorrect errors that can cause oscillations of constant or changing amplitude. A feedback control problem essentially depends on both state and time variables, and so its determination by numerical schemes has one serious drawback, it is the so called curse of dimensionality. Therefore, efficient numerical methods are needed for the accurate determination of optimal feedback controls. There are essentially two equivalent ways in widespread use today to solve optimal feedback control problems. In the first approach, often referred to as the direct approach, the optimal feedback control problem is approximated by considering the optimisation of an objective functional with respect to the control function. This optimisation is subject to the system dynamics and numerous constraints on the state and control variables. In the second approach, the optimal feedback control problem is transformed into a first order terminal value problem by formulating the problem as a nonlinear hyperbolic partial differential equation, known as the Hamilton-Jacobi-Bellman (HJB) equation. In this thesis we consider some numerical algorithms for solving the HJB equation, based on Radial Basis Functions (RBFs). We present a new adaptive least-squares collocation RBFs method for solving a HJB equation. The method involves the use of the least squares method using a set of RBFs in space variables, combined with the implicit backward Euler finite difference method in time, to create an unconditionally stable solution scheme. We also present some of the more theoretical aspects related to the solution of the HJB equation using the adaptive least-squares collocation RBFs method, especially, the relevant existence, uniqueness and stability results. We demonstrate the accuracy and effectiveness of this method by performing numerical experiments on test problems with up to three states and two control variables. Furthermore, we construct another numerical method based on a domain decomposition method using a matrix inversion technique for solving HJB equation. In this method, we propose a new formula for inverting nonsymmetric and full dense coefficient matrix faster than the classical matrix inversion techniques. We also investigate the accuracy of the numerical solution, condition numbers of the system matrix, and the computational time when increasing the number of subdomains. We perform some numerical experiments to illustrate the usefulness and accuracy of the method.