Download or read book A Critical State Model for the Cyclic Loading Pore Pressure Response of Soils written by John Alan Egan and published by . This book was released on 1977 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Soil Behaviour and Critical State Soil Mechanics written by David Muir Wood and published by Cambridge University Press. This book was released on 1991-04-26 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soils can rarely be described as ideally elastic or perfectly plastic and yet simple elastic and plastic models form the basis for the most traditional geotechnical engineering calculations. With the advent of cheap powerful computers the possibility of performing analyses based on more realistic models has become widely available. One of the aims of this book is to describe the basic ingredients of a family of simple elastic-plastic models of soil behaviour and to demonstrate how such models can be used in numerical analyses. Such numerical analyses are often regarded as mysterious black boxes but a proper appreciation of their worth requires an understanding of the numerical models on which they are based. Though the models on which this book concentrates are simple, understanding of these will indicate the ways in which more sophisticated models will perform.
Download or read book Soil Liquefaction written by Michael Jefferies and published by CRC Press. This book was released on 2006-09-04 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil liquefaction is a major concern in areas of the world subject to seismic activity or other repeated vibration loads. This book brings together a large body of information on the topic, and presents it within a unified and simple framework. The result is a book which will provide the practising civil engineer with a very sound understanding of
Download or read book Proceedings of the 5th International Conference on Geotechnics for Sustainable Infrastructure Development written by Phung Duc Long and published by Springer Nature. This book was released on with total page 2890 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering Beijing 2022 written by Lanmin Wang and published by Springer Nature. This book was released on 2022-09-19 with total page 2417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 4th International Conference on Performance-based Design in Earthquake Geotechnical Engineering (PBD-IV) is held in Beijing, China. The PBD-IV Conference is organized under the auspices of the International Society of Soil Mechanics and Geotechnical Engineering - Technical Committee TC203 on Earthquake Geotechnical Engineering and Associated Problems (ISSMGE-TC203). The PBD-I, PBD-II, and PBD-III events in Japan (2009), Italy (2012), and Canada (2017) respectively, were highly successful events for the international earthquake geotechnical engineering community. The PBD events have been excellent companions to the International Conference on Earthquake Geotechnical Engineering (ICEGE) series that TC203 has held in Japan (1995), Portugal (1999), USA (2004), Greece (2007), Chile (2011), New Zealand (2015), and Italy (2019). The goal of PBD-IV is to provide an open forum for delegates to interact with their international colleagues and advance performance-based design research and practices for earthquake geotechnical engineering.
Download or read book Frontiers in Offshore Geotechnics III written by Vaughan Meyer and published by CRC Press. This book was released on 2015-05-15 with total page 1422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Frontiers in Offshore Geotechnics III comprises the contributions presented at the Third International Symposium on Frontiers in Offshore Geotechnics (ISFOG, Oslo, Norway, 10-12 June 2015), organised by the Norwegian Geotechnical Institute (NGI). The papers address current and emerging geotechnical engineering challenges facing those working in off
Download or read book State of the Art and Practice in the Assessment of Earthquake Induced Soil Liquefaction and Its Consequences written by National Academies of Sciences, Engineering, and Medicine and published by . This book was released on 2019-01-30 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquake-induced soil liquefaction (liquefaction) is a leading cause of earthquake damage worldwide. Liquefaction is often described in the literature as the phenomena of seismic generation of excess porewater pressures and consequent softening of granular soils. Many regions in the United States have been witness to liquefaction and its consequences, not just those in the west that people associate with earthquake hazards. Past damage and destruction caused by liquefaction underline the importance of accurate assessments of where liquefaction is likely and of what the consequences of liquefaction may be. Such assessments are needed to protect life and safety and to mitigate economic, environmental, and societal impacts of liquefaction in a cost-effective manner. Assessment methods exist, but methods to assess the potential for liquefaction triggering are more mature than are those to predict liquefaction consequences, and the earthquake engineering community wrestles with the differences among the various assessment methods for both liquefaction triggering and consequences. State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences evaluates these various methods, focusing on those developed within the past 20 years, and recommends strategies to minimize uncertainties in the short term and to develop improved methods to assess liquefaction and its consequences in the long term. This report represents a first attempt within the geotechnical earthquake engineering community to consider, in such a manner, the various methods to assess liquefaction consequences.
Download or read book Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering written by The Organizing Committee of the 16th ICSMGE and published by IOS Press. This book was released on 2005-09-12 with total page 3742 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 16th ICSMGE responds to the needs of the engineering and construction community, promoting dialog and exchange between academia and practice in various aspects of soil mechanics and geotechnical engineering. This is reflected in the central theme of the conference 'Geotechnology in Harmony with the Global Environment'. The proceedings of the conference are of great interest for geo-engineers and researchers in soil mechanics and geotechnical engineering. Volume 1 contains 5 plenary session lectures, the Terzaghi Oration, Heritage Lecture, and 3 papers presented in the major project session. Volumes 2, 3, and 4 contain papers with the following topics: Soil mechanics in general; Infrastructure and mobility; Environmental issues of geotechnical engineering; Enhancing natural disaster reduction systems; Professional practice and education. Volume 5 contains the report of practitioner/academic forum, 20 general reports, a summary of the sessions and workshops held during the conference.
Download or read book Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils written by Ernest Theodore Selig and published by ASTM International. This book was released on 1973 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Seafloor Processes and Geotechnology written by Ronald Chaney and published by CRC Press. This book was released on 2015-11-04 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: An ideal resource for civil engineers working with offshore structures, pipelines, dredging, and coastal erosion, Seafloor Processes and Geotechnology bridges the gap between the standard soil mechanics curriculum of civil engineering and published material on marine geotechnology. Utilizing organized information on sediments and foundations for ma
Download or read book Cyclic Behaviour of Soils and Liquefaction Phenomena written by Th. Triantafyllidis and published by CRC Press. This book was released on 2004-07-01 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: This conference brought together specialists in cyclic soil behaviour in order to discuss important results and new ideas in the field, and to share expertise in design of various problems involving cyclic or dynamic behaviour of soils. This book covers a variety of topics: * Theory and analysis, including constitutive relations of soil under cyclic loading, post-seismic stability analysis of soil/structure, dynamic stability of structures, liquefaction analysis of marine structures due to cyclic loading, and more * Cyclic and dynamic laboratory and model testing, centrifuge testing and in-situ testing. * Numerical analysis, including computer methods * Design of industrial applications and marine structures, installation methods of piles, vibrocompaction, densification of ballast in railway structures, case studies of earthquakes and post-liquefaction observations.
Download or read book Geotechnical Earthquake Engineering written by Steven L. Kramer and published by CRC Press. This book was released on 2024-11-29 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fully updated second edition provides an introduction to geotechnical earthquake engineering for first-year graduate students in geotechnical or earthquake engineering graduate programs with a level of detail that will also be useful for more advanced students as well as researchers and practitioners. It begins with an introduction to seismology and earthquake ground motions, then presents seismic hazard analysis and performance-based earthquake engineering (PBEE) principles. Dynamic soil properties pertinent to earthquake engineering applications are examined, both to facilitate understanding of soil response to seismic loads and to describe their practical measurement as part of site characterization. These topics are followed by site response and its analysis and soil–structure interaction. Ground failure in the form of soil liquefaction, cyclic softening, surface fault rupture, and seismically induced landslides are also addressed, and the book closes with a chapter on soil improvement and hazard mitigation. The first edition has been widely used around the world by geotechnical engineers as well as many seismologists and structural engineers. The main text of this book and the four appendices: • Cover fundamental concepts in applied seismology, geotechnical engineering, and structural dynamics. • Contain numerous references for further reading, allowing for detailed exploration of background or more advanced material. • Present worked example problems that illustrate the application of key concepts emphasized in the text. • Include chapter summaries that emphasize the most important points. • Present concepts of performance-based earthquake engineering with an emphasis on uncertainty and the types of probabilistic analyses needed to implement PBEE in practice. • Present a broad, interdisciplinary narrative, drawing from the fields of seismology, geotechnical engineering, and structural engineering to facilitate holistic understanding of how geotechnical earthquake engineering is applied in seismic hazard and risk analyses and in seismic design.
Download or read book Deformation Characteristics of Geomaterials written by V.A. Rinaldi and published by IOS Press. This book was released on 2015-12-11 with total page 1236 pages. Available in PDF, EPUB and Kindle. Book excerpt: In November 2015, Buenos Aires, Argentina became the location of several important events for geo-professionals, with the simultaneous holding of the 6th International Symposium on Deformation Characteristics of Geomaterials, the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (XV PCSMGE), the 8th South American Congress on Rock Mechanics (SCRM), as well as the 22nd Argentinean Congress of Geotechnical Engineering (CAMSIGXXII). This synergy provided a unique opportunity to exchange ideas and discuss current and future practices in the areas of soil mechanics and rock mechanics, and their applications in civil, energy, environmental, and mining engineering. This book presents the proceedings of the 6th International Symposium on Deformation Characteristics of Geomaterials. As well as 118 articles selected for publication after peer review, it includes 7 lectures delivered by invited keynote speakers and the Third Bishop Lecture, delivered by Professor Herve Di Benedetto of the University of Lyon, France, who presented a reference work on the advanced testing and modeling of bituminous bounded and unbounded granular materials. The conference brought together practitioners, researchers and educators from around the world engaged in the understanding of the deformation properties of geo-materials before failure, and the small strain parameters as fundamental characteristics of geo-materials. The main topics covered by the symposium include experimental investigations from very small strains to beyond failure, including multi-physical approach; HTC M coupling behavior, characterization and modeling of various geo-materials and interfaces; and practical prediction and interpretation of ground responses: field observation and case histories.
Download or read book Physical Modelling in Geotechnics Volume 1 written by Andrew McNamara and published by CRC Press. This book was released on 2018-07-11 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physical Modelling in Geotechnics collects more than 1500 pages of peer-reviewed papers written by researchers from over 30 countries, and presented at the 9th International Conference on Physical Modelling in Geotechnics 2018 (City, University of London, UK 17-20 July 2018). The ICPMG series has grown such that two volumes of proceedings were required to publish all contributions. The books represent a substantial body of work in four years. Physical Modelling in Geotechnics contains 230 papers, including eight keynote and themed lectures representing the state-of-the-art in physical modelling research in aspects as diverse as fundamental modelling including sensors, imaging, modelling techniques and scaling, onshore and offshore foundations, dams and embankments, retaining walls and deep excavations, ground improvement and environmental engineering, tunnels and geohazards including significant contributions in the area of seismic engineering. ISSMGE TC104 have identified areas for special attention including education in physical modelling and the promotion of physical modelling to industry. With this in mind there is a special themed paper on education, focusing on both undergraduate and postgraduate teaching as well as practicing geotechnical engineers. Physical modelling has entered a new era with the advent of exciting work on real time interfaces between physical and numerical modelling and the growth of facilities and expertise that enable development of so called ‘megafuges’ of 1000gtonne capacity or more; capable of modelling the largest and most complex of geotechnical challenges. Physical Modelling in Geotechnics will be of interest to professionals, engineers and academics interested or involved in geotechnics, geotechnical engineering and related areas. The 9th International Conference on Physical Modelling in Geotechnics was organised by the Multi Scale Geotechnical Engineering Research Centre at City, University of London under the auspices of Technical Committee 104 of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). City, University of London, are pleased to host the prestigious international conference for the first time having initiated and hosted the first regional conference, Eurofuge, ten years ago in 2008. Quadrennial regional conferences in both Europe and Asia are now well established events giving doctoral researchers, in particular, the opportunity to attend an international conference in this rapidly evolving specialist area. This is volume 1 of a 2-volume set.
Download or read book Poromechanics III Biot Centennial 1905 2005 written by Younane N. Abousleiman and published by CRC Press. This book was released on 2005-05-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings represent the latest advances in the mechanics of porous materials, known as poromechanics. The porous materials considered are solids containing voids that are impregnated with fluid. The focus is on the mechanical interactions of the inhomogeneous solid with the single- or multi-phase fluid under the loading of mechanical force, fluid pressure, thermal, chemical, and magnetic fields. The response time can be in static, diffusional, and dynamic ranges. The length scale can start from nano, to micro, macro, and up to field scales. Its application covers many branches of science and engineering, including geophysics, geomechanics, composite materials, biomechanics, acoustics, seismicity, civil, mechanical, environmental, and petroleum engineering. The approaches taken include analytical, computational, and experimental. To honor the pioneering contributions of Maurice A. Biot (1905-1985) to poromechanics, the Biot Conference on Poromechanics was convened for the first time in Louvain-la-Neuve, Belgium in 1998. The success of the first conference led to the 2nd Biot Conference held in Grenoble, France in 2002. To celebrate the centennial birthday of Biot (May 25, 2005), the 3rd Biot Conference on Poromechanics was held at the University of Oklahoma, Norman, Oklahoma, U.S.A., on May 24-27, 2005.
Download or read book Marine Geology and Geotechnology of the South China Sea and Taiwan Strait written by Ronald C. Chaney and published by CRC Press. This book was released on 2020-11-24 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The waters and rich resources of the South China Sea are claimed by seven different countries, and it is estimated that approximately 40% of the world’s trade moves through the area. Marine Geology and Geotechnology of the South China Sea and Taiwan Strait examines the physiology, geology, and potential development of this important portion of the western Pacific Ocean’s largest marginal sea. The book covers multiple oceanographic topics, and further discusses topography, sedimentation, wave generation, and hazards such as earthquakes, storm surges, and tsunamis. In addition, it explains the engineering issues and design considerations involved regarding a potential Taiwan Strait Crossing, as well as the development of near-shore communities. Features: Examines seabed material, such as clays, calcareous, siliceous, and various other organic sediments Presents different potential routing strategies for sea crossings using tunnels, bridges, or a combination of both Provides bridge design recommendations considering aesthetics, seismic and wind issues, potential vessel collisions, and more Includes a historical timeline and useful maps regarding the political complexity of the area and the various territorial claims made by different nations Marine Geology and Geotechnology of the South China Sea and Taiwan Strait serves as a valuable resource for geotechnical engineers, marine geologists, civil engineers, and professionals concerned with the region.
Download or read book Foundation Engineering Handbook written by Hsai-Yang Fang and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 935 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than ten years have passed since the first edition was published. During that period there have been a substantial number of changes in geotechnical engineering, especially in the applications of foundation engineering. As the world population increases, more land is needed and many soil deposits previously deemed unsuitable for residential housing or other construction projects are now being used. Such areas include problematic soil regions, mining subsidence areas, and sanitary landfills. To overcome the problems associated with these natural or man-made soil deposits, new and improved methods of analysis, design, and implementation are needed in foundation construction. As society develops and living standards rise, tall buildings, transportation facilities, and industrial complexes are increasingly being built. Because of the heavy design loads and the complicated environments, the traditional design concepts, construction materials, methods, and equipment also need improvement. Further, recent energy and material shortages have caused additional burdens on the engineering profession and brought about the need to seek alternative or cost-saving methods for foundation design and construction.