Download or read book A Course on Point Processes written by R.-D. Reiss and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook provides a straight-forward and mathematically rigorous introduction to the standard theory of point processes. The author's aim is to present an account which concentrates on the essentials and which places an emphasis on conveying an intuitive understanding of the subject. As a result, it provides a clear presentation of how statistical ideas can be viewed from this perspective and particular topics covered include the theory of extreme values and sampling from finite populations. Prerequisites are that the reader has a basic grounding in the mathematical theory of probability and statistics, but otherwise the book is self-contained. It arises from courses given by the author over a number of years and includes numerous exercises ranging from simple computations to more challenging explorations of ideas from the text.
Download or read book Point Process Theory and Applications written by Martin Jacobsen and published by Springer Science & Business Media. This book was released on 2006-07-27 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematically rigorous exposition of the basic theory of marked point processes and piecewise deterministic stochastic processes Point processes are constructed from scratch with detailed proofs Includes applications with examples and exercises in survival analysis, branching processes, ruin probabilities, sports (soccer), finance and risk management, and queueing theory Accessible to a wider cross-disciplinary audience
Download or read book An Introduction to the Theory of Point Processes written by D.J. Daley and published by Springer Science & Business Media. This book was released on 2006-04-10 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.
Download or read book Extreme Values Regular Variation and Point Processes written by Sidney I. Resnick and published by Springer. This book was released on 2013-12-20 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors. It emphasizes the core primacy of three topics necessary for understanding extremes: the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces.
Download or read book Point Processes written by D.R. Cox and published by Routledge. This book was released on 2018-12-19 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been much recent research on the theory of point processes, i.e., on random systems consisting of point events occurring in space or time. Applications range from emissions from a radioactive source, occurrences of accidents or machine breakdowns, or of electrical impluses along nerve fibres, to repetitive point events in an individual's medical or social history. Sometimes the point events occur in space rather than time and the application here raneg from statistical physics to geography. The object of this book is to develop the applied mathemathics of point processes at a level which will make the ideas accessible both to the research worker and the postgraduate student in probability and statistics and also to the mathemathically inclined individual in another field interested in using ideas and results. A thorough knowledge of the key notions of elementary probability theory is required to understand the book, but specialised "pure mathematical" coniderations have been avoided.
Download or read book Zeros of Gaussian Analytic Functions and Determinantal Point Processes written by John Ben Hough and published by American Mathematical Soc.. This book was released on 2009 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines in some depth two important classes of point processes, determinantal processes and 'Gaussian zeros', i.e., zeros of random analytic functions with Gaussian coefficients. This title presents a primer on modern techniques on the interface of probability and analysis.
Download or read book Statistical Inference and Simulation for Spatial Point Processes written by Jesper Moller and published by CRC Press. This book was released on 2003-09-25 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.
Download or read book Survival and Event History Analysis written by Odd Aalen and published by Springer Science & Business Media. This book was released on 2008-09-16 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.
Download or read book Fractal Based Point Processes written by Steven Bradley Lowen and published by John Wiley & Sons. This book was released on 2005-09-19 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated approach to fractals and point processes This publication provides a complete and integrated presentation of the fields of fractals and point processes, from definitions and measures to analysis and estimation. The authors skillfully demonstrate how fractal-based point processes, established as the intersection of these two fields, are tremendously useful for representing and describing a wide variety of diverse phenomena in the physical and biological sciences. Topics range from information-packet arrivals on a computer network to action-potential occurrences in a neural preparation. The authors begin with concrete and key examples of fractals and point processes, followed by an introduction to fractals and chaos. Point processes are defined, and a collection of characterizing measures are presented. With the concepts of fractals and point processes thoroughly explored, the authors move on to integrate the two fields of study. Mathematical formulations for several important fractal-based point-process families are provided, as well as an explanation of how various operations modify such processes. The authors also examine analysis and estimation techniques suitable for these processes. Finally, computer network traffic, an important application used to illustrate the various approaches and models set forth in earlier chapters, is discussed. Throughout the presentation, readers are exposed to a number of important applications that are examined with the aid of a set of point processes drawn from biological signals and computer network traffic. Problems are provided at the end of each chapter allowing readers to put their newfound knowledge into practice, and all solutions are provided in an appendix. An accompanying Web site features links to supplementary materials and tools to assist with data analysis and simulation. With its focus on applications and numerous solved problem sets, this is an excellent graduate-level text for courses in such diverse fields as statistics, physics, engineering, computer science, psychology, and neuroscience.
Download or read book Adventures in Stochastic Processes written by Sidney I. Resnick and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.
Download or read book Determinantal Point Processes for Machine Learning written by Alex Kulesza and published by Now Pub. This book was released on 2012-11-29 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a comprehensible introduction to DPPs, focusing on the intuitions, algorithms, and extensions that are most relevant to the machine learning community.
Download or read book Spatial Point Patterns written by Adrian Baddeley and published by CRC Press. This book was released on 2015-11-11 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th
Download or read book Lectures on the Poisson Process written by Günter Last and published by Cambridge University Press. This book was released on 2017-10-26 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.
Download or read book A Basic Course in Measure and Probability written by Ross Leadbetter and published by Cambridge University Press. This book was released on 2014-01-30 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction covering all of the measure theory and probability most useful for statisticians.
Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Download or read book Stationary Stochastic Processes written by Georg Lindgren and published by CRC Press. This book was released on 2012-10-01 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.
Download or read book Probability Theory written by Achim Klenke and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed primarily at graduate students and researchers, this text is a comprehensive course in modern probability theory and its measure-theoretical foundations. It covers a wide variety of topics, many of which are not usually found in introductory textbooks. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation.