EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Continuous discontinusous Model to Simulate Crack Branching in Quasi brittle Failure

Download or read book A Continuous discontinusous Model to Simulate Crack Branching in Quasi brittle Failure written by Jordi Feliu Fabà and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the material failure of quasi-brittle materials, such as concrete, is of vital importance in civil engineering. A continuous-discontinuous model using X-FEM enrichment can be useful when an explicit representation of cracks is required. Besides crack propagation, crack branching can also be modelled by the appropriate X-FEM enrichment. Multiple applications of crack branching simulation can be found, including fracking and dynamic crack propagation.

Book Computational Methods for Fracture

Download or read book Computational Methods for Fracture written by Timon Rabczuk and published by MDPI. This book was released on 2019-10-28 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Book A Continuous discontinuous Model to Introduce Fluid Pressure in a Crack

Download or read book A Continuous discontinuous Model to Introduce Fluid Pressure in a Crack written by Montserrat Casado Antolín and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Cracking of quasi-brittle materials (such as concrete, rocks,) may be modelled by means of continuous, discontinuous or continuous-discontinuous models. The latter combine a continuous damage model for the initial stages of degradation with a discontinuous model later on. This switching from a smeared to an explicit representation of the crack is useful in many applications, to model the interaction between the cracked structure and a fluid inside the crack. The capabilities of a continuous-discontinuous model to simulate hydraulic fracture are explored in this work.

Book Continuous discontinuous Modelling for Quasi brittle Failure

Download or read book Continuous discontinuous Modelling for Quasi brittle Failure written by Elena Tamayo Mas and published by . This book was released on 2013 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Scaled Boundary Finite Element Method

Download or read book The Scaled Boundary Finite Element Method written by Chongmin Song and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.

Book The Variational Approach to Fracture

Download or read book The Variational Approach to Fracture written by Blaise Bourdin and published by Springer Science & Business Media. This book was released on 2008-04-19 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting original results from both theoretical and numerical viewpoints, this text offers a detailed discussion of the variational approach to brittle fracture. This approach views crack growth as the result of a competition between bulk and surface energy, treating crack evolution from its initiation all the way to the failure of a sample. The authors model crack initiation, crack path, and crack extension for arbitrary geometries and loads.

Book Quasibrittle Fracture Mechanics and Size Effect

Download or read book Quasibrittle Fracture Mechanics and Size Effect written by Jia-Liang Le and published by Oxford University Press. This book was released on 2021-11-19 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many modern engineering structures are composed of brittle heterogenous, or quasibrittle, materials. These include concrete, composites, tough ceramics, rocks, cold asphalt mixtures, and many brittle materials at the microscale. Understanding the failure behavior of these materials is of paramount importance for improving the resilience and sustainability of various engineering structures including civil infrastructure, aircraft, ships, military armors, and microelectronic devices. Designed for graduate and upper-level undergraduate university courses, this textbook provides a comprehensive treatment of quasibrittle fracture mechanics. It includes a concise but rigorous examination of linear elastic fracture mechanics, which is the foundation of all fracture mechanics. It also covers the fundamental concepts of nonlinear fracture mechanics, and introduces more advanced concepts such as triaxial stress state in the fracture process zone, nonlocal continuum models, and discrete computational models. Finally, the book features extensive discussion of the various practical applications of quasibrittle fracture mechanics across different structures and engineering disciplines, and throughout includes exercises and problems for students to test their understanding.

Book Approximation of Free Discontinuity Problems

Download or read book Approximation of Free Discontinuity Problems written by Andrea Braides and published by Springer Science & Business Media. This book was released on 1998-09-17 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functionals involving both volume and surface energies have a number of applications ranging from Computer Vision to Fracture Mechanics. In order to tackle numerical and dynamical problems linked to such functionals many approximations by functionals defined on smooth functions have been proposed (using high-order singular perturbations, finite-difference or non-local energies, etc.) The purpose of this book is to present a global approach to these approximations using the theory of gamma-convergence and of special functions of bounded variation. The book is directed to PhD students and researchers in calculus of variations, interested in approximation problems with possible applications.

Book Crack Propagation Theories

Download or read book Crack Propagation Theories written by Fazil Erdogan and published by . This book was released on 1967 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulations of Dynamic Crack Propagation in Brittle Materials Using Nodal Cohesive Forces and Continuum Damage Mechanics in the Distinct Element Code LDEC

Download or read book Simulations of Dynamic Crack Propagation in Brittle Materials Using Nodal Cohesive Forces and Continuum Damage Mechanics in the Distinct Element Code LDEC written by and published by . This book was released on 2006 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental data indicates that the limiting crack speed in brittle materials is less than the Rayleigh wave speed. One reason for this is that dynamic instabilities produce surface roughness and microcracks that branch from the main crack. These processes increase dissipation near the crack tip over a range of crack speeds. When the scale of observation (or mesh resolution) becomes much larger than the typical sizes of these features, effective-medium theories are required to predict the coarse-grained fracture dynamics. Two approaches to modeling these phenomena are described and used in numerical simulations. The first approach is based on cohesive elements that utilize a rate-dependent weakening law for the nodal cohesive forces. The second approach uses a continuum damage model which has a weakening effect that lowers the effective Rayleigh wave speed in the material surrounding the crack tip. Simulations in this paper show that while both models are capable of increasing the energy dissipated during fracture when the mesh size is larger than the process zone size, only the continuum damage model is able to limit the crack speed over a range of applied loads. Numerical simulations of straight-running cracks demonstrate good agreement between the theoretical predictions of the combined models and experimental data on dynamic crack propagation in brittle materials. Simulations that model crack branching are also presented.

Book Dynamic Fracture

    Book Details:
  • Author : K. Ravi-Chandar
  • Publisher : Elsevier
  • Release : 2004-10-16
  • ISBN : 0080472559
  • Pages : 265 pages

Download or read book Dynamic Fracture written by K. Ravi-Chandar and published by Elsevier. This book was released on 2004-10-16 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic fracture in solids has attracted much attention for over a century from engineers as well as physicists due both to its technological interest and to inherent scientific curiosity. Rapidly applied loads are encountered in a number of technical applications. In some cases such loads might be applied deliberately, as for example in problems of blasting, mining, and comminution or fragmentation; in other cases, such dynamic loads might arise from accidental conditions. Regardless of the origin of the rapid loading, it is necessary to understand the mechanisms and mechanics of fracture under dynamic loading conditions in order to design suitable procedures for assessing the susceptibility to fracture. Quite apart from its repercussions in the area of structural integrity, fundamental scientific curiosity has continued to play a large role in engendering interest in dynamic fracture problems In-depth coverage of the mechanics, experimental methods, practical applications Summary of material response of different materials Discussion of unresolved issues in dynamic fracture

Book Dynamic Fracture Mechanics

Download or read book Dynamic Fracture Mechanics written by Arun Shukla and published by World Scientific. This book was released on 2006 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.

Book Multifield Problems in Solid and Fluid Mechanics

Download or read book Multifield Problems in Solid and Fluid Mechanics written by Rainer Helmig and published by Springer Science & Business Media. This book was released on 2006-11-28 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an overview of the research projects within the SFB 404 "Mehrfeldprobleme in der Kontinuumsmechanik". The book is for researchers and graduate students in applied mechanics and civil engineering.

Book Fracture and Size Effect in Concrete and Other Quasibrittle Materials

Download or read book Fracture and Size Effect in Concrete and Other Quasibrittle Materials written by Zdenek P. Bazant and published by Routledge. This book was released on 2019-03-04 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fracture and Size Effect in Concrete and Other Quasibrittle Materials is the first in-depth text on the application of fracture mechanics to the analysis of failure in concrete structures. The book synthesizes a vast number of recent research results in the literature to provide a comprehensive treatment of the topic that does not give merely the facts - it provides true understanding. The many recent results on quasibrittle fracture and size effect, which were scattered throughout many periodicals, are compiled here in a single volume. This book presents a well-rounded discussion of the theory of size effect and scaling of failure loads in structures. The size effect, which is the most important practical manifestation of fracture behavior, has become a hot topic. It has gained prominence in current research on concrete and quasibrittle materials. The treatment of every subject in Fracture and Size Effect in Concrete and Other Quasibrittle Materials proceeds from simple to complex, from specialized to general, and is as concise as possible using the simplest level of mathematics necessary to treat the subject clearly and accurately. Whether you are an engineering student or a practicing engineer, this book provides you with a clear presentation, including full derivations and examples, from which you can gain real understanding of fracture and size effect in concrete and other quasibrittle materials.

Book Peridynamic Differential Operator for Numerical Analysis

Download or read book Peridynamic Differential Operator for Numerical Analysis written by Erdogan Madenci and published by Springer. This book was released on 2019-01-17 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the peridynamic (PD) differential operator, which enables the nonlocal form of local differentiation. PD is a bridge between differentiation and integration. It provides the computational solution of complex field equations and evaluation of derivatives of smooth or scattered data in the presence of discontinuities. PD also serves as a natural filter to smooth noisy data and to recover missing data. This book starts with an overview of the PD concept, the derivation of the PD differential operator, its numerical implementation for the spatial and temporal derivatives, and the description of sources of error. The applications concern interpolation, regression, and smoothing of data, solutions to nonlinear ordinary differential equations, single- and multi-field partial differential equations and integro-differential equations. It describes the derivation of the weak form of PD Poisson’s and Navier’s equations for direct imposition of essential and natural boundary conditions. It also presents an alternative approach for the PD differential operator based on the least squares minimization. Peridynamic Differential Operator for Numerical Analysis is suitable for both advanced-level student and researchers, demonstrating how to construct solutions to all of the applications. Provided as supplementary material, solution algorithms for a set of selected applications are available for more details in the numerical implementation.

Book Peridynamic Models for Crack Nucleation in Brittle and Quasi Brittle Materials

Download or read book Peridynamic Models for Crack Nucleation in Brittle and Quasi Brittle Materials written by Sina Niazi and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Failure in materials initiates from the microscale (defects, pores, etc.) and can affect, sometimes catastrophically, the structure scale. In this thesis, peridynamics (PD) is adopted to study crack nucleation in brittle and quasi-brittle materials.PD models of bodies without pre-cracks, based on a single fracture parameter (associated with the critical fracture energy), produce different strengths when different horizon sizes are used to simulate crack nucleation under quasi-static conditions. To maintain the same strength and fracture energy under different horizon sizes, extra parameters have to be introduced in the failure model, leading to, e.g. bilinear and trilinear models. We study crack nucleation in a plate with a hole under quasi-static loading using these models. We provide analytical formulas to calibrate the models to measurable material properties. We show convergence for both strength and fracture toughness, for both brittle and quasi-brittle systems. We then introduce similar PD models to study crack nucleation and rupture in soft materials, by which one can capture crack nucleation sites and final rupture similar to those seen in the experiment.In this work, we also introduce a PD model for simulating brittle damage and fracture in elastic porous materials based on an Intermediate Homogenization (IH) approach. In this approach, instead of explicitly representing the detailed pore geometry, we use homogenization but maintain some information about the microstructure (porosity) in the model. Porosity is introduced as initial peridynamic damage, implemented by stochastically pre-breaking bonds to match the desired porosity. We use the IH-PD model to study the fracture behavior of notched sandstone-type samples under three-point bending tests. Results by the IHPD model, in contrast with those with a fully-homogenized model, agree very well with experiments: we obtain different failure modes depending on the length of the off-center pre-notch. The results show the importance of inserting some information about heterogeneities (like pores) into the models aimed to study brittle damage initiation and growth in porous materials.