EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Computational and Theoretical Study of Conductance in Hydrogen bonded Molecular Junctions

Download or read book A Computational and Theoretical Study of Conductance in Hydrogen bonded Molecular Junctions written by Michael Wimmer and published by . This book was released on 2017 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano- junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction.In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH...O, OH...O, and NH...N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has fo- cused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance de- scriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular descrip- tion of conductance that is not based on the conventional view of molecular orbitals as transport channels. My findings suggest that the hydrogen-bond networks are crucial in understanding the conductance of these junctions. A broader impact of this work pertains the fact that characterizing transport through hydrogen bonding networks may help in developing faster and cost-effective approaches to personalized medicine, to advance DNA sequencing and implantable electronics, and to progress in the design and application of new drugs.

Book Theoretical Treatments of Hydrogen Bonding

Download or read book Theoretical Treatments of Hydrogen Bonding written by Dušan Hadži and published by John Wiley & Sons. This book was released on 1997-12-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrogen bonding is crucial in many chemical and biochemical reactions, as well as in determining material properties. A good insight into the theoretical methods of treating hydrogen bonding is essential for those wishing to model its effects computationally in a wide range of fields involving hydrogen bonding, as well as those wishing to extract the maximal amount of information from experimental data. Theoretical Treatments of Hydrogen Bonding presents the reader with the state of the art of the key theoretical approaches to hydrogen bonding and considers the hydrogen bond from the various aspects. The first five chapters are devoted to the methods used for treating the electronic basis of hydrogen bonding, including a consideration of the electrostatic model, density functional theory and molecular orbital methods. Later chapters consider the dynamics of hydrogen bonds with particular attention to the treatment of proton transfer; manifestations of dynamics as reflected in infrared spectra and nuclear magnetic relaxation are also considered. Hydrogen bonding in liquids and solids such as ferroelectrics are included. The book concludes with an epilogue which discusses the likely development of hydrogen bond computations in very large chemical systems. Theoretical Treatments of Hydrogen Bonding offers the reader a comprehensive view of the current theoretical approaches to hydrogen bonding. It is a valuable presentation of theoretical tools useful to those looking for the most appropriate approach for treating a particular problem involving hydrogen bonding.

Book Hydrogen Bonding   New Insights

Download or read book Hydrogen Bonding New Insights written by Slawomir Grabowski and published by Springer. This book was released on 2013-01-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses examples from experimental studies to illustrate theoretical investigations, allowing greater understanding of hydrogen bonding phenomena. The most important topics in recent studies are covered. This volume is an invaluable resource that will be of particular interest to physical and theoretical chemists, spectroscopists, crystallographers and those involved with chemical physics.

Book Understanding Hydrogen Bonds

Download or read book Understanding Hydrogen Bonds written by Slawomir J Grabowski and published by . This book was released on 2020-07-13 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The area of hydrogen bonding is one that is well studied but our understanding continues to develop as the power of both computational and experimental techniques has improved. This book presents an up-to-date overview of our theoretical and experimental understanding of the hydrogen bond. It covers both well-established and novel approaches, new types of interaction that might be classified as hydrogen bonds and a comparison of hydrogen bonds to other types of non-covalent interactions.

Book Single Molecule Electronics

Download or read book Single Molecule Electronics written by Manabu Kiguchi and published by Springer. This book was released on 2016-05-23 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a multidisciplinary approach to single-molecule electronics. It includes a complete overview of the field, from the synthesis and design of molecular candidates to the prevalent experimental techniques, complemented by a detailed theoretical description. This all-inclusive strategy provides the reader with the much-needed perspective to fully understand the far-reaching ramifications of single-molecule electronics. In addition, a number of state-of-the-art topics are discussed, including single-molecule spectro-electrical methods, electrochemical DNA sequencing technology, and single-molecule chemical reactions. As a result of this integrative effort, this publication may be used as an introductory textbook to both graduate and advanced undergraduate students, as well as researchers with interests in single-molecule electronics, organic electronics, surface science, and nanoscience.

Book Computational Methods for Large Systems

Download or read book Computational Methods for Large Systems written by Jeffrey R. Reimers and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: While its results normally complement the information obtained by chemical experiments, computer computations can in some cases predict unobserved chemical phenomena Electronic-Structure Computational Methods for Large Systems gives readers a simple description of modern electronic-structure techniques. It shows what techniques are pertinent for particular problems in biotechnology and nanotechnology and provides a balanced treatment of topics that teach strengths and weaknesses, appropriate and inappropriate methods. It’s a book that will enhance the your calculating confidence and improve your ability to predict new effects and solve new problems.

Book Molecular Electronics

    Book Details:
  • Author : Juan Carlos Cuevas
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814282588
  • Pages : 724 pages

Download or read book Molecular Electronics written by Juan Carlos Cuevas and published by World Scientific. This book was released on 2010 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Book Unimolecular and Supramolecular Electronics II

Download or read book Unimolecular and Supramolecular Electronics II written by Robert M. Metzger and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Electronic Junction Transport: Some Pathways and Some Ideas, by Gemma C. Solomon, Carmen Herrmann and Mark A. Ratner Unimolecular Electronic Devices, by Robert M. Metzger and Daniell L. Mattern Active and Non-Active Large-Area Metal–Molecules–Metal Junctions, by Barbara Branchi, Felice C. Simeone and Maria A. Rampi Charge Transport in Single Molecular Junctions at the Solid/Liquid Interface, by Chen Li, Artem Mishchenko and Thomas Wandlowski Tunneling Spectroscopy of Organic Monolayers and Single Molecules, by K. W. Hipps Single Molecule Logical Devices, by Nicolas Renaud, Mohamed Hliwa and Christian Joachim

Book Directory of Graduate Research

Download or read book Directory of Graduate Research written by American Chemical Society. Committee on Professional Training and published by . This book was released on 2005 with total page 1932 pages. Available in PDF, EPUB and Kindle. Book excerpt: Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.

Book Handbook of Molecular Force Spectroscopy

Download or read book Handbook of Molecular Force Spectroscopy written by Aleksandr Noy and published by Springer Science & Business Media. This book was released on 2008 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook presents a review of modern force spectroscopy, including fundamentals of intermolecular forces, technical aspects of the force measurements, and practical applications. It is an authoritative guide to planning, understanding, and analyzing modern molecular force spectroscopy experiments.

Book Molecular Scale Electronics

Download or read book Molecular Scale Electronics written by Xuefeng Guo and published by Springer. This book was released on 2018-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Book Journal

    Book Details:
  • Author : American Chemical Society
  • Publisher :
  • Release : 2004
  • ISBN :
  • Pages : 1544 pages

Download or read book Journal written by American Chemical Society and published by . This book was released on 2004 with total page 1544 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Carbon Based Electronic Devices

Download or read book Carbon Based Electronic Devices written by Alberto Tagliaferro and published by MDPI. This book was released on 2020-02-14 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: For more than 50 years, silicon has dominated the electronics industry. However, this growth will come to an end, due to resources limitations. Thus, research developments need to focus to alternative materials, with higher performance and better functionality. Current research achievements have indicated that carbon is one of the promising candidates for its exploitation in the electronics industry. Whereas the physical properties of graphite and diamond have been investigated for many years, the potential for electronic applications of other allotropes of carbon (fullerenes, carbon nanotubes, carbon nanofibres, carbon films, carbon balls and beads, carbon fibers, etc), has only been appreciated relatively recently. Carbon-based materials offer a number of exciting possibilities for new applications of electronic devices, due to their unique thermal and electrical properties. However, the success of carbon-based electronics depends on the rapid progress of the fabrication, doping and manipulation techniques. In this Special Issue, we focus on both insights and advancements in carbon-based electronics. We will also cover various topics ranging from synthesis, functionalisation, and characterisation of carbon-based materials, for their use in electronic devices, including advanced manufacturing techniques, such as 3D printing, ink-jet printing, spray-gun technique, etc.

Book Atomic Scale Modelling of Electrochemical Systems

Download or read book Atomic Scale Modelling of Electrochemical Systems written by Marko M. Melander and published by John Wiley & Sons. This book was released on 2021-09-09 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Book Nanotechnology

Download or read book Nanotechnology written by and published by . This book was released on 2003 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Frontier Orbitals and Organic Chemical Reactions

Download or read book Frontier Orbitals and Organic Chemical Reactions written by Ian Fleming and published by John Wiley & Sons. This book was released on 1976-01-01 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic introduction to frontier orbital theory with a review of its applications in organic chemistry. Assuming the reader is familiar with the concept of molecular orbital as a linear combination of atomic orbitals the book is presented in a simple style, without mathematics making it accessible to readers of all levels.

Book Classical And Quantum Dynamics In Condensed Phase Simulations  Proceedings Of The International School Of Physics

Download or read book Classical And Quantum Dynamics In Condensed Phase Simulations Proceedings Of The International School Of Physics written by Bruce J Berne and published by World Scientific. This book was released on 1998-06-17 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.