EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A computational and experimental study of spark ignition engine combustion

Download or read book A computational and experimental study of spark ignition engine combustion written by Timothy Hattrell and published by . This book was released on 2007 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational and Experimental Investigation of Chamber Design and Combustion Process Interaction in a Spark Ignition Engine

Download or read book Computational and Experimental Investigation of Chamber Design and Combustion Process Interaction in a Spark Ignition Engine written by H. J. Van der Westhuizen and published by . This book was released on 2003 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling Spark Ignition Combustion

Download or read book Modelling Spark Ignition Combustion written by P. A. Lakshminarayanan and published by Springer Nature. This book was released on with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quasi Dimensional Simulation of Spark Ignition Engines

Download or read book Quasi Dimensional Simulation of Spark Ignition Engines written by Alejandro Medina and published by Springer Science & Business Media. This book was released on 2013-08-20 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the simulations developed in research groups over the past years, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines provides a compilation of the main ingredients necessary to build up a quasi-dimensional computer simulation scheme. Quasi-dimensional computer simulation of spark ignition engines is a powerful but affordable tool which obtains realistic estimations of a wide variety of variables for a simulated engine keeping insight the basic physical and chemical processes involved in the real evolution of an automotive engine. With low computational costs, it can optimize the design and operation of spark ignition engines as well as it allows to analyze cycle-to-cycle fluctuations. Including details about the structure of a complete simulation scheme, information about what kind of information can be obtained, and comparisons of the simulation results with experiments, Introduction to Quasi-dimensional Simulation of Spark Ignition Engines offers a thorough guide of this technique. Advanced undergraduates and postgraduates as well as researchers in government and industry in all areas related to applied physics and mechanical and automotive engineering can apply these tools to simulate cyclic variability, potentially leading to new design and control alternatives for lowering emissions and expanding the actual operation limits of spark ignition engines

Book Numerical and Experimental Studies on Combustion Engines and Vehicles

Download or read book Numerical and Experimental Studies on Combustion Engines and Vehicles written by Paweł Woś and published by BoD – Books on Demand. This book was released on 2020-11-26 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: The matters discussed and presented in the chapters of this book cover a wide spectrum of topics and research methods commonly used in the field of engine combustion technology and vehicle functional systems. This book contains the results of both computational analyses and experimental studies on jet and reciprocating combustion engines as well heavy-duty onroad vehicles. Special attention is devoted to research and measures toward preventing the emission of harmful exhaust components, reducing fuel consumption or using unconventional methods of engine fueling or using renewable and alternative fuels in different applications. Some technical improvements in design and control of vehicle systems are also presented.

Book Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines

Download or read book Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines written by Jihad Badra and published by Elsevier. This book was released on 2022-01-05 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines summarizes recent developments in Artificial Intelligence (AI)/Machine Learning (ML) and data driven optimization and calibration techniques for internal combustion engines. The book covers AI/ML and data driven methods to optimize fuel formulations and engine combustion systems, predict cycle to cycle variations, and optimize after-treatment systems and experimental engine calibration. It contains all the details of the latest optimization techniques along with their application to ICE, making it ideal for automotive engineers, mechanical engineers, OEMs and R&D centers involved in engine design. - Provides AI/ML and data driven optimization techniques in combination with Computational Fluid Dynamics (CFD) to optimize engine combustion systems - Features a comprehensive overview of how AI/ML techniques are used in conjunction with simulations and experiments - Discusses data driven optimization techniques for fuel formulations and vehicle control calibration

Book Computational Fluid Dynamic Modelling of Flow and Combustion in Spark Ignition Engines

Download or read book Computational Fluid Dynamic Modelling of Flow and Combustion in Spark Ignition Engines written by and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The present work is based on the need for understanding the in-cylinder flow and its subsequent effects on combustion in a valved-two-stroke spark ignition engine with fuel injection using Computational Fluid Dynamics (CFD) and experimental techniques. In this context, the CFD code KIVA-II has been modified to model the two-stroke engine gas exchange and combustion processes. A 3-D Cartesian grid generation program for complex engine geometry has been added to the KIVA code which has been modified to include intake and exhaust flow processes with valves. New and improved sub models for wall jet interaction, mixing controlled combustion and one dimensional wave action have also been incorporated. The modified version of the program has been used to simulate a fuel injected two-stroke spark ignition engine and parametric studies have been undertaken. The simulated flow, combustion and exhaust emission characteristics over a wide range of operating conditions show the expected trends in behaviour observed in actual engines. In the second phase of this study, the air-assisted-fuel-injection (AAFI) process into a cylinder has been simulated with a high resolution computational grid. The simulation results are presented and compared with experimental data obtained using the Schlieren optical technique. An approximate method based on the conservation of mass, momentum and energy of the spray jet and using a comparatively coarse grid has been suggested for simulating the AAFI process. The simulation study predicts a high degree of atomisation of fuel spray with Sauter mean diameter around 10 μm even with moderate air and fuel pressures. The penetration and width of spray are simulated within 15% of the experimental values. In the last phase of this study, the flow and combustion processes have been studied for a four-stroke spark ignition engine with the AAFI process. The simulation results obtained using this approximate method have been validated with experimental data ge.

Book Computational and Experimental Studies

Download or read book Computational and Experimental Studies written by Y. Villacampa and published by WIT Press. This book was released on 2018-03-28 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprising specially selected papers on the subject of Computational Methods and Experimental Measurements, this book includes research from scientists, researchers and specialists who perform experiments, develop computer codes and carry out measurements on prototypes. Improvements relating to computational methods have generated an ever-increasing expansion of computational simulations that permeate all fields of science and technology. Validating the results of these improvements can be achieved by carrying out committed and accurate experiments, which have undertaken continuous development. Current experimental techniques have become more complex and sophisticated so that they require the intensive use of computers, both for running experiments as well as acquiring and processing the resulting data. This title explores new experimental and computational methods and covers various topics such as: Computer-aided Models; Image Analysis Applications; Noise Filtration of Shockwave Propagation; Finite Element Simulations.

Book Proceedings of International Conference on Thermofluids

Download or read book Proceedings of International Conference on Thermofluids written by Shripad Revankar and published by Springer Nature. This book was released on 2020-11-21 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected and peer-reviewed proceedings of the International Conference on Thermofluids (KIIT Thermo 2020). It focuses on the latest studies and findings in the areas of fluid dynamics, heat transfer, thermodynamics, and combustion. Some of the topics covered in the book include electronic cooling, HVAC system analysis, inverse heat transfer, combustion, nano-fluids, multiphase flow, high-speed flow, and shock waves. The book includes both experimental and numerical studies along with a few review chapters from experienced researchers, and is expected to lead to new research in this important area. This book is of interest to students, researchers as well as practitioners working in the areas of fluid dynamics, thermodynamics, and combustion.

Book Internal Combustion Engines

Download or read book Internal Combustion Engines written by Constantine Arcoumanis and published by Elsevier. This book was released on 2012-12-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal Combustion Engines covers the trends in passenger car engine design and technology. This book is organized into seven chapters that focus on the importance of the in-cylinder fluid mechanics as the controlling parameter of combustion. After briefly dealing with a historical overview of the various phases of automotive industry, the book goes on discussing the underlying principles of operation of the gasoline, diesel, and turbocharged engines; the consequences in terms of performance, economy, and pollutant emission; and of the means available for further development and improvement. A chapter focuses on the automotive fuels of the various types of engines. Recent developments in both the experimental and computational fronts and the application of available research methods on engine design, as well as the trends in engine technology, are presented in the concluding chapters. This book is an ideal compact reference for automotive researchers and engineers and graduate engineering students.

Book Computational and Experimental Models of Induction Flows in Spark ignition Engines

Download or read book Computational and Experimental Models of Induction Flows in Spark ignition Engines written by and published by . This book was released on 1903 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this thesis is to combine computational flow modelling, flow visualization and point measurements of mean flow and turbulence properties to obtain a better, more detailed, understandýing of the effects of alternative throttling devices on mixture preparation and turbulence generation in spark ignition engines. In so doing, it also seeks to assess the wider diagnostic potential of flow field computational techniques in internal combustion engine designs. Full-scale models, comprising simplified representations of the induction tract, throttling device, inlet valve and cylinder, have been manufactured in Perspex for steady-state water analogy tests. The resulting photographs of flow tracers in a variety of viewing planes provide a clear, but qualitative, picture of the princi - pal features of the flow in the models under study. The essentially qualitative data obtained from water analogy tests are complemented by limited hot wire velocity measurements at particular stations in the Perspex models, with air replacing the water as the flow medium. These data, supplemented by information in the literature, provide the framework for comparisons with an extensive computational simulation of induction flows which are performed using the general purpose PHOENICS code developed by CHAM. These studies include both transient and steady state predictions. The statistically stationary turbulent flow field through alternative induction system throttling devices -a conventional butterfly valve and a variable geometry ramp restriction- are modelled computationally and compared with water analogy flow visualization. The principal flow field characteristics are satisfactorily reproduced, including in particular the extent of the recirculation zone in the lee of the throttle and the relative persistence of the turbulence generated downstream for varying throat apertures. That generated by the two-dimensional variable geometry ramp is predicted to be both higher and per.

Book Computational Investigation of Optimal Heavy Fuel Direct Injection Sark Ignition in Rotary Engine

Download or read book Computational Investigation of Optimal Heavy Fuel Direct Injection Sark Ignition in Rotary Engine written by Asela A. Benthara Wadumesthrige and published by . This book was released on 2011 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this computational study is to investigate the optimum injection and spark parameters for the direct injection spark ignition (DISI) Wankel rotary engine using diesel fuel. Currently only port fuel injected gasoline rotary engines are available in the automotive industry. Compared to reciprocating type engines rotary engine is mechanically simple, less vibrate, have higher power to weight ratio and achieve better performance at high rpm. Due to the inherent low fuel efficiency of rotary engine and increasing gas prices, application of the rotary engine in conventional automobiles is decreasing. This project seeks to introduce DISI technology to the rotary engine thus increase the fuel efficiency allowing it to be another efficient power source option for aero and automotive applications. DISI technology is the latest trend in the automobile manufacturing. This technology helped to combine benefits of both compression ignition (CI) and spark ignition (SI) engines into a single efficient internal combustion process. Multi-fuel capabilities, reduced operating pressures, and reduced compression ratios make this technology applicable for rotary engines. In this study diesel fuel, as opposed to gasoline, is introduced into the rotary engine using DISI technology. Due to high technological advancements used in DISI engines, it is expensive to experimentally incorporate this technology to a new engine. Accurately designed computational analyses can reduce both time and cost by cutting extra experimental test trials. For this computational fluid dynamics (CFD) study ANSYS FLUENT commercial software was used to integrate the DISI technology into a rotary engine model which was designed in Solidworks and meshed in GAMBIT. When creating the engine model, many parameters have to be considered. Engine geometry, injectors, and spark plugs were identified as the most important components needed to be investigated when integrating DISI technology into the rotary engine. By using a readily available rotary engine, direct injector, and spark plug, the number of parameters for the optimization process were reduced. The most important parameters were picked to evaluate the optimum single injection and spark locations. Full factorial experimental design was used to estimate the sensitivity of different combinations of parameters. This was followed by a statistical sensitivity study using JMP 800 commercial software to determine the most and least sensitive parameters to analyze for the optimum setup of single injection rotary engine combustion. Contour plots of fuel consumption, CO2 generated, equivalence ratio, average temperatures, and pressures were used to support the results. The feasibility of multiple injections was also studied by means of their power outputs and fuel efficiencies. Optimum locations, amounts of fuel, number of orifices and orientations of orifices were included when evaluating optimum lead (second) injector. Similar studies were carried out to check the applicability of a third injector. From the results it can be observed that a dual injection setup provided optimum performance from the DISI rotary engine.

Book Computational and Experimental Models of Induction Flows in Spark ignition Engines

Download or read book Computational and Experimental Models of Induction Flows in Spark ignition Engines written by R. Sanatian and published by . This book was released on 1988 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Engine Modeling and Simulation

Download or read book Engine Modeling and Simulation written by Avinash Kumar Agarwal and published by Springer Nature. This book was released on 2021-12-16 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the simulation and modeling of internal combustion engines. The contents include various aspects of diesel and gasoline engine modeling and simulation such as spray, combustion, ignition, in-cylinder phenomena, emissions, exhaust heat recovery. It also explored engine models and analysis of cylinder bore piston stresses and temperature effects. This book includes recent literature and focuses on current modeling and simulation trends for internal combustion engines. Readers will gain knowledge about engine process simulation and modeling, helpful for the development of efficient and emission-free engines. A few chapters highlight the review of state-of-the-art models for spray, combustion, and emissions, focusing on the theory, models, and their applications from an engine point of view. This volume would be of interest to professionals, post-graduate students involved in alternative fuels, IC engines, engine modeling and simulation, and environmental research.

Book Computational Modeling to Study the Effect of Fuel Pre treatment on IC Engine Combustion Control

Download or read book Computational Modeling to Study the Effect of Fuel Pre treatment on IC Engine Combustion Control written by Venkateswara Raju Dantuluri and published by . This book was released on 2015 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conventional internal combustion (IC) engine combustion strategies such as homogeneous charge spark ignition (HCSI) and stratified charge compression ignition (SCCI) engines have nearly reached their maximum performance and emission reduction capabilities. New low-temperature combustion (LTC) strategies such as homogeneous charge compression ignition (HCCI) and derivitives have the potential to reduce engine-out emissions while maintaining high efficiency; however, combustion phasing challenges must be solved before their widespread use is adopted. The present work studies the potential of two strategies to control combustion phasing of LTC systems: (1) using intra-cycle re-circulated partial oxidation products (RePOx) and (2) internal fuel reformation by residuals during negative valve overlap (NVO). Both systems were studied using chemical kinetic modeling assuming n-heptane as the fuel. A detailed kinetic mechanism was constructed by combining existing n-heptane and nitrogen mechanisms and validated using HCCI experimental data available from the literature. The RePOx strategy was newly conceived as part of this work. The partial oxidation products are created by extracting a portion of the lean charge products during the expansion stroke and mixing these with the fuel in an auxiliary chamber (RePOx prechamber). The equivalence ratio of the recirculated reactants is controlled by varying the amount of mass extracted. The re-circulated partially-oxidized products are then reintroduced into the main chamber and mixed with compressed air to facilitate the main chamber reaction. This process is modeled using a complex reactor network in the CHEMKIN-PRO software package combined with an external program to balance mass and energy for the RePOx system. The study of this concept was performed in two phases. In the first phase, all the fuel was delivered through the RePOx prechamber, while in the second phase, part of the fuel was premixed in the main chamber prior to compression and the balance was delivered through the prechamber. In both phases, the effects of extraction mass, extraction timing, injection timing, pre-chamber volume, and overall equivalence ratio were examined. Varying pre-chamber volume did not show any effect on the performance or combustion phasing under the conditions and assumptions of this study. In the first phase, advancing injection timing by 5o and 10o crank angle (CA) has advanced the combustion phasing by 1.8o and 3.3o CA respectively. With the premixed charge, the combustion in the main engine chamber exhibited low temperature heat release (LTHR) after 30o crank angle (CA) before top dead center (BTDC) compression. This LTHR varied this trend. When the injection was before LTHR (before -30o CA) the trend is similar to first phase. When the injection is after LTHR (-20o CA), the rise in temperature during LTHR advanced the combustion by 7o CA when compared to -30o CA. In both phases when extraction mass is 5% or above, the combustion is advanced with increased extraction amount. When the extraction mass is below 3%, the incomplete alkane oxidation in pre-chamber caused LTHR in the main chamber after injection causing advanced combustion. Late extraction has delayed the combustion in both phases when there is no LTHR. When there is LTHR, the effect of temperature rise due to LTHR dominated the effect of late extraction and there is no variation in combustion phasing. Increasing overall equivalence ratio without premixing from 04 to 0.5 and 0.6 advanced the combustion phasing by 2o and 3o respectively. Under the conditions of the investigation, the RePOx system without premixing was able to operate at lower overall equivalence ratio than pure HCCI. The (NVO) strategy was incorporated into a 'conventional' HCCI engine and was also modeled and evaluated using a complex reactor network in CHEMKIN-PRO. In this case, however, actual experimental data was available from the literature to validate the system as modeled. The data showed that start of injection timing during NVO (NVO_SOI) effected the fuel reformation and varied the main combustion phasing. The main combustion phasing is delayed as the NVO_SOI is intitally retarded since the later injection caused less heat release during NVO, which reduced the temperatures after closing the intake valve (IVC). However, once a particular threshold was reached, additional delay in NVO_SOI resulted in advanced main combustion phasing. The model showed that this was because the reduced time for reformation during NVO caused more alkanes from the reformed fuel to be present during compression of the main combustion event. This triggered low temperature heat release (LTHR) during compression, from which the associated temperature rise caused advanced main combustion. While the model showed the same heat release timing trend as the experimental work, the point of reversing the trend due to LTHR occurred with NVO_SOI 10o crank angle earlier than as it occurred in the experimental results. When both RePOx and NVO systems are compared using the same engine displacement, the RePOx system has more than twice the power output than NVO because the full displacement can be used for fresh charge, whereas the volumetric efficiency is significantly impacted by the NVO valve timing. The RePOx system has more controlling parameters than the NVO system to control the combustion phasing and optimizing performance and emissions. The current research work demonstrates that presence of LTHR effectively minimizes the effect of othe parameters on combustion phasing in both RePOx and NVO systems. LTHR can be minimized by reforming the fuel and controlling the concentrations of species such as HO2, alkenes and alkanes. This work shows that both fuel reforming strategies investigated can be effectively used to control the combustion phasing in LTC systems.

Book HCCI and CAI Engines for the Automotive Industry

Download or read book HCCI and CAI Engines for the Automotive Industry written by Hua Zhao and published by CRC Press. This book was released on 2007-09-10 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.