EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Compendium of Partial Differential Equation Models

Download or read book A Compendium of Partial Differential Equation Models written by William E. Schiesser and published by Cambridge University Press. This book was released on 2009-03-16 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods and computer code in Matlab for the solution of ODEs and PDEs with detailed line-by-line discussion.

Book A Compendium of Partial Differential Equation Models

Download or read book A Compendium of Partial Differential Equation Models written by William E. Schiesser and published by Cambridge University Press. This book was released on 2009-03-16 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modelling of physical and chemical systems is used extensively throughout science, engineering, and applied mathematics. To use mathematical models, one needs solutions to the model equations; this generally requires numerical methods. This book presents numerical methods and associated computer code in Matlab for the solution of a spectrum of models expressed as partial differential equations (PDEs). The authors focus on the method of lines (MOL), a well-established procedure for all major classes of PDEs, where the boundary value partial derivatives are approximated algebraically by finite differences. This reduces the PDEs to ordinary differential equations (ODEs) and makes the computer code easy to understand, implement, and modify. Also, the ODEs (via MOL) can be combined with any other ODEs that are part of the model (so that MOL naturally accommodates ODE/PDE models). This book uniquely includes a detailed line-by-line discussion of computer code related to the associated PDE model.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by R. M. M. Mattheij and published by SIAM. This book was released on 2005-01-01 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Textbook with a unique approach that integrates analysis and numerical methods and includes modelling to address real-life problems.

Book Applied Partial Differential Equations

Download or read book Applied Partial Differential Equations written by J. David Logan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.

Book Methods for Partial Differential Equations

Download or read book Methods for Partial Differential Equations written by Marcelo R. Ebert and published by Birkhäuser. This book was released on 2018-02-23 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.

Book An Introduction to Partial Differential Equations

Download or read book An Introduction to Partial Differential Equations written by Michael Renardy and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.

Book Separation of Variables for Partial Differential Equations

Download or read book Separation of Variables for Partial Differential Equations written by George Cain and published by CRC Press. This book was released on 2005-11-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Separation of Variables for Partial Differential Equations: An Eigenfunction Approach includes many realistic applications beyond the usual model problems. The book concentrates on the method of separation of variables for partial differential equations, which remains an integral part of the training in applied mathematics. Beyond the usual model problems, the presentation includes a number of realistic applications that illustrate the power and usefulness of the ideas behind these techniques. This complete, self-contained book includes numerous exercises and error estimates, as well as a rigorous approximation and computational tool.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Mark S. Gockenbach and published by SIAM. This book was released on 2005-01-01 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations (PDEs) are essential for modeling many physical phenomena. This undergraduate textbook introduces students to the topic with a unique approach that emphasizes the modern finite element method alongside the classical method of Fourier analysis.

Book PDE Dynamics

    Book Details:
  • Author : Christian Kuehn
  • Publisher : SIAM
  • Release : 2019-04-10
  • ISBN : 1611975662
  • Pages : 267 pages

Download or read book PDE Dynamics written by Christian Kuehn and published by SIAM. This book was released on 2019-04-10 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research. PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines. Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.

Book Differential Equations as Models in Science and Engineering

Download or read book Differential Equations as Models in Science and Engineering written by Gregory Baker and published by World Scientific Publishing Company. This book was released on 2016-07-25 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook develops a coherent view of differential equations by progressing through a series of typical examples in science and engineering that arise as mathematical models. All steps of the modeling process are covered: formulation of a mathematical model; the development and use of mathematical concepts that lead to constructive solutions; validation of the solutions; and consideration of the consequences. The volume engages students in thinking mathematically, while emphasizing the power and relevance of mathematics in science and engineering. There are just a few guidelines that bring coherence to the construction of solutions as the book progresses through ordinary to partial differential equations using examples from mixing, electric circuits, chemical reactions and transport processes, among others. The development of differential equations as mathematical models and the construction of their solution is placed center stage in this volume.

Book Methods of Mathematical Modelling

Download or read book Methods of Mathematical Modelling written by Thomas Witelski and published by Springer. This book was released on 2015-09-18 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

Book Nonlinear Differential Equation Models

Download or read book Nonlinear Differential Equation Models written by Ansgar Jüngel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this book originate from lectures which were held at the "Vienna Workshop on Nonlinear Models and Analysis" – May 20–24, 2002. They represent a cross-section of the research field Applied Nonlinear Analysis with emphasis on free boundaries, fully nonlinear partial differential equations, variational methods, quasilinear partial differential equations and nonlinear kinetic models.

Book Nonstandard Finite Difference Models of Differential Equations

Download or read book Nonstandard Finite Difference Models of Differential Equations written by Ronald E. Mickens and published by World Scientific. This book was released on 1994 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.

Book Separation of Variables for Partial Differential Equations

Download or read book Separation of Variables for Partial Differential Equations written by George Cain and published by CRC Press. This book was released on 2019-12 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Separation of Variables for Partial Differential Equations: An Eigenfunction Approach includes many realistic applications beyond the usual model problems. The book concentrates on the method of separation of variables for partial differential equations, which remains an integral part of the training in applied mathematics. Beyond the usual model problems, the presentation includes a number of realistic applications that illustrate the power and usefulness of the ideas behind these techniques. This complete, self-contained book includes numerous exercises and error estimates, as well as a rigorous approximation and computational tool.

Book Mathematical Aspects of Finite Elements in Partial Differential Equations

Download or read book Mathematical Aspects of Finite Elements in Partial Differential Equations written by Carl de Boor and published by Academic Press. This book was released on 2014-05-10 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Aspects of Finite Elements in Partial Differential Equations addresses the mathematical questions raised by the use of finite elements in the numerical solution of partial differential equations. This book covers a variety of topics, including finite element method, hyperbolic partial differential equation, and problems with interfaces. Organized into 13 chapters, this book begins with an overview of the class of finite element subspaces with numerical examples. This text then presents as models the Dirichlet problem for the potential and bipotential operator and discusses the question of non-conforming elements using the classical Ritz- and least-squares-method. Other chapters consider some error estimates for the Galerkin problem by such energy considerations. This book discusses as well the spatial discretization of problem and presents the Galerkin method for ordinary differential equations using polynomials of degree k. The final chapter deals with the continuous-time Galerkin method for the heat equation. This book is a valuable resource for mathematicians.

Book Finite Difference Methods for Ordinary and Partial Differential Equations

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Book Optimal Control Problems for Partial Differential Equations on Reticulated Domains

Download or read book Optimal Control Problems for Partial Differential Equations on Reticulated Domains written by Peter I. Kogut and published by Springer Science & Business Media. This book was released on 2011-09-09 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for graduate students, researchers, and practitioners in mathematics and areas of engineering involving reticulated domains.