EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sigma Delta Converters  Practical Design Guide

Download or read book Sigma Delta Converters Practical Design Guide written by Jose M. de la Rosa and published by John Wiley & Sons. This book was released on 2018-08-22 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly revised and expanded to help readers systematically increase their knowledge and insight about Sigma-Delta Modulators Sigma-Delta Modulators (SDMs) have become one of the best choices for the implementation of analog/digital interfaces of electronic systems integrated in CMOS technologies. Compared to other kinds of Analog-to-Digital Converters (ADCs), Σ∆Ms cover one of the widest conversion regions of the resolution-versus-bandwidth plane, being the most efficient solution to digitize signals in an increasingly number of applications, which span from high-resolution low-bandwidth digital audio, sensor interfaces, and instrumentation, to ultra-low power biomedical systems and medium-resolution broadband wireless communications. Following the spirit of its first edition, Sigma-Delta Converters: Practical Design Guide, 2nd Edition takes a comprehensive look at SDMs, their diverse types of architectures, circuit techniques, analysis synthesis methods, and CAD tools, as well as their practical design considerations. It compiles and updates the current research reported on the topic, and explains the multiple trade-offs involved in the whole design flow of Sigma-Delta Modulators—from specifications to chip implementation and characterization. The book follows a top-down approach in order to provide readers with the necessary understanding about recent advances, trends, and challenges in state-of-the-art Σ∆Ms. It makes more emphasis on two key points, which were not treated so deeply in the first edition: It includes a more detailed explanation of Σ∆Ms implemented using Continuous-Time (CT) circuits, going from system-level synthesis to practical circuit limitations. It provides more practical case studies and applications, as well as a deeper description of the synthesis methodologies and CAD tools employed in the design of Σ∆ converters. Sigma-Delta Converters: Practical Design Guide, 2nd Edition serves as an excellent textbook for undergraduate and graduate students in electrical engineering as well as design engineers working on SD data-converters, who are looking for a uniform and self-contained reference in this hot topic. With this goal in mind, and based on the feedback received from readers, the contents have been revised and structured to make this new edition a unique monograph written in a didactical, pedagogical, and intuitive style.

Book Delta sigma Modulators  Modeling  Design And Applications

Download or read book Delta sigma Modulators Modeling Design And Applications written by Vassilis Anastassopoulos and published by World Scientific. This book was released on 2003-09-09 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important book deals with the modeling and design of higher-order single-stage delta-sigma modulators. It provides an overview of the architectures, the quantizer models, the design techniques and the implementation issues encountered in the study of the delta-sigma modulators. A number of applications are discussed, with emphasis on use in the design of analog-to-digital converters and in frequency synthesis. The book is education- rather than research-oriented, containing numerical examples and unsolved problems. It is aimed at introducing the final-year undergraduate, the graduate student or the electronic engineer to this field.

Book MATLAB Simulink for Digital Communication

Download or read book MATLAB Simulink for Digital Communication written by Won Y. Yang and published by Won Y. Yang. This book was released on 2018-03-02 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 1: Fourier Analysis 1 1.1 CONTINUOUS-TIME FOURIER SERIES (CTFS)................................................................... 2 1.2 PROPERTIES OF CTFS............................................................................................................... 6 1.2.1 Time-Shifting Property....................................................................................................... 6 1.2.2 Frequency-Shifting Property ............................................................................................ 6 1.2.3 Modulation Property......................................................................................................... 6 1.3 CONTINUOUS-TIME FOURIER TRANSFORM (CTFT)....................................................... 7 1.4 PROPERTIES OF CTFT............................................................................................................. 13 1.4.1 Linearity............................................................................................................................ 13 1.4.2 Conjugate Symmetry........................................................................................................ 13 1.4.3 Real Translation (Time Shifting) and Complex Translation (Frequency Shifting)..... 14 1.4.4 Real Convolution and Correlation................................................................................... 14 1.4.5 Complex Convolution – Modulation/Windowing.......................................................... 14 1.4.6 Duality............................................................................................................................... 17 1.4.7 Parseval Relation - Power Theorem................................................................................ 18 1.5 DISCRETE-TIME FOURIER TRANSFORM (DTFT)............................................................ 18 1.6 DISCRETE-TIME FOURIER SERIES - DFS/DFT.................................................................. 19 1.7 SAMPLING THEOREM............................................................................................................. 21 1.7.1 Relationship between CTFS and DFS ........................................................................... 21 1.7.2 Relationship between CTFT and DTFT.......................................................................... 27 1.7.3 Sampling Theorem............................................................................................................ 27 1.8 POWER, ENERGY, AND CORRELATION............................................................................ 29 1.9 LOWPASS EQUIVALENT OF BANDPASS SIGNALS........................................................ 30 Chapter 2: PROBABILITY AND RANDOM PROCESSES 39 2.1 PROBABILITY........................................................................................................................... 39 2.1.1 Definition of Probability................................................................................................. 39 2.1.2 Joint Probability and Conditional Probability............................................................... 40 2.1.3 Probability Distribution/Density Function..................................................................... 41 2.1.4 Joint Probability Density Function................................................................................. 41 2.1.5 Condtional Probability Density Function...................................................................... 41 2.1.6 Independence................................................................................................................... 41 2.1.7 Function of a Random Variable...................................................................................... 42 2.1.8 Expectation, Covariance, and Correlation..................................................................... 43 2.1.9 Conditional Expectation.................................................................................................. 47 2.1.10 Central Limit Theorem - Normal Convergence Theorem............................................. 47 2.1.11 Random Processes............................................................................................................ 49 2.1.12 Stationary Processes and Ergodic Processes.................................................................. 51 2.1.13 Power Spectral Density (PSD)......................................................................................... 53 2.1.14 White Noise and Colored Noise...................................................................................... 53 2.2 LINEAR FILTERING OF A RANDOM PROCESS................................................................ 57 2.3 PSD OF A RANDOM PROCESS.............................................................................................. 58 2.4 FADING EFFECT OF A MULTIPATH CHANNEL............................................................... 58 Chapter 3: ANALOG MODULATION 71 3.1 AMPLITUDE MODULATION (AM)....................................................................................... 71 3.1.1 DSB (Double Sideband)-AM (Amplitude Modulation)............................................... 71 3.1.2 Conventional AM (Amplitude Modulation)................................................................ 75 3.1.3 SSB (Single Sideband)-AM(Amplitude Modulation)................................................. 78 3.2 ANGLE MODULATION (AGM) - FREQUENCY/PHASE MODULATIONS .................. 82 Chapter 4: ANALOG-TO-DIGITAL CONVERSION 87 4.1 QUANTIZATION........................................................................................................................ 87 4.1.1 Uniform Quantization..................................................................................................... 88 4.1.2 Non-uniform Quantization.............................................................................................. 89 4.1.3 Non-uniform Quantization Considering the Absolute Errors .................................... 91 4.2 Pulse Code Modulation (PCM)................................................................................................... 95 4.3 Differential Pulse Code Modulation (DPCM)........................................................................... 97 4.4 Delta Modulation (DM)............................................................................................................. 100 Chapter 5: BASEBAND TRANSMISSION 107 5.1 RECEIVER (RCVR) and SNR ............................................................................................... 107 5.1.1 Receiver of RC Filter Type.......................................................................................... 109 5.1.2 Receiver of Matched Filter Type................................................................................. 110 5.1.3 Signal Correlator........................................................................................................... 112 5.2 PROBABILITY OF ERROR WITH SIGNALING................................................................ 114 5.2.1 Antipodal (Bipolar) Signaling...................................................................................... 114 5.2.2 On-Off Keying (OOK)/Unipolar Signaling................................................................. 118 5.2.3 Orthogonal Signaling.................................................................................................... 119 5.2.4 Signal Constellation Diagram...................................................................................... 121 5.2.5 Simulation of Binary Communication......................................................................... 123 5.2.6 Multi-Level(amplitude) PAM Signaling..................................................................... 127 5.2.7 Multi-Dimensional Signaling....................................................................................... 129 5.2.8 Bi-Orthogonal Signaling............................................................................................... 133 Chapter 6: BANDLIMITED CHANNEL AND EQUALIZER 139 6.1 BANDLIMITED CHANNEL................................................................................................... 139 6.1.1 Nyquist Bandwidth........................................................................................................ 139 6.1.2 Raised-Cosine Frequency Response............................................................................ 141 6.1.3 Partial Respone Signaling - Duobinary Signaling...................................................... 143 6.2 EQUALIZER............................................................................................................................. 148 6.2.1 Zero-Forcing Equalizer (ZFE)...................................................................................... 148 6.2.2 MMSE Equalizer (MMSEE)........................................................................................ 151 6.2.3 Adaptive Equalizer (ADE)........................................................................................... 154 6.2.4 Decision Feedback Equalizer (DFE)............................................................................ 155 Chapter 7: BANDPASS TRANSMISSION 169 7.1 AMPLITUDE SHIFT KEYING (ASK)................................................................................... 169 7.2 FREQUENCY SHIFT KEYING (FSK)................................................................................... 178 7.3 PHASE SHIFT KEYING (PSK)............................................................................................... 187 7.4 DIFFERENTIAL PHASE SHIFT KEYING (DPSK)............................................................. 190 7.5 QUADRATURE AMPLITUDE MODULATION (QAM).................................................... 195 7.6 COMPARISON OF VARIOUS SIGNALINGS...................................................................... 200 Chapter 8: CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION 227 8.1 INTRODUCTION..................................................................................................................... 227 8.2 PLL (PHSE-LOCKED LOOP)................................................................................................. 228 8.3 ESTIMATION OF CARRIER PHASE USING PLL............................................................. 233 8.4 CARRIER PHASE RECOVERY............................................................................................. 235 8.4.1 Carrier Phase Recovery Using a Squaring Loop for BPSK Signals.......................... 235 8.4.2 Carrier Phase Recovery Using Costas Loop for PSK Signals.................................... 237 8.4.3 Carrier Phase Recovery for QAM Signals.................................................................. 240 8.5 SYMBOL SYNCHRONIZATION (TIMING RECOVERY)................................................ 243 8.5.1 Early-Late Gate Timing Recovery for BPSK Signals................................................ 243 8.5.2 NDA-ELD Synchronizer for PSK Signals.................................................................. 246 Chapter 9: INFORMATION AND CODING 257 9.1 MEASURE OF INFORMATION - ENTROPY...................................................................... 257 9.2 SOURCE CODING................................................................................................................... 259 9.2.1 Huffman Coding............................................................................................................ 259 9.2.2 Lempel-Zip-Welch Coding........................................................................................... 262 9.2.3 Source Coding vs. Channel Coding............................................................................. 265 9.3 CHANNEL MODEL AND CHANNEL CAPACITY............................................................ 266 9.4 CHANNEL CODING................................................................................................................ 271 9.4.1 Waveform Coding......................................................................................................... 272 9.4.2 Linear Block Coding..................................................................................................... 273 9.4.3 Cyclic Coding................................................................................................................ 282 9.4.4 Convolutional Coding and Viterbi Decoding.............................................................. 287 9.4.5 Trellis-Coded Modulation (TCM)................................................................................ 296 9.4.6 Turbo Coding................................................................................................................. 300 9.4.7 Low-Density Parity-Check (LDPC) Coding............................................................... 311 9.4.8 Differential Space-Time Block Coding (DSTBC)...................................................... 316 9.5 CODING GAIN ....................................................................................................................... 319 Chapter 10: SPREAD-SPECTRUM SYSTEM 339 10.1 PN (Pseudo Noise) Sequence..................................................................................................... 339 10.2 DS-SS (Direct Sequence Spread Spectrum)............................................................................. 347 10.3 FH-SS (Frequency Hopping Spread Spectrum)........................................................................ 352 Chapter 11: OFDM SYSTEM 359 11.1 OVERVIEW OF OFDM......................................................................................................... 359 11.2 FREQUENCY BAND AND BANDWIDTH EFFICIENCY OF OFDM............................ 363 11.3 CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION.......................................... 364 11.4 CHANNEL ESTIMATION AND EQUALIZATION.......................................................... 381 11.5 INTERLEAVING AND DEINTERLEAVING..................................................................... 384 11.6 PUNCTURING AND DEPUNCTURING............................................................................ 386 11.7 IEEE STANDARD 802.11A - 1999....................................................................................... 388

Book Oversampled Delta Sigma Modulators

Download or read book Oversampled Delta Sigma Modulators written by Mücahit Kozak and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oversampled Delta-Sigma Modulators: Analysis, Applications, and Novel Topologies presents theorems and their mathematical proofs for the exact analysis of the quantization noise in delta-sigma modulators. Extensive mathematical equations are included throughout the book to analyze both single-stage and multi-stage architectures. It has been proved that appropriately set initial conditions generate tone free output, provided that the modulator order is at least three. These results are applied to the design of a Fractional-N PLL frequency synthesizer to produce spurious free RF waveforms. Furthermore, the book also presents time-interleaved topologies to increase the conversion bandwidth of delta-sigma modulators. The topologies have been generalized for any interleaving number and modulator order. The book is full of design and analysis techniques and contains sufficient detail that enables readers with little background in the subject to easily follow the material in it.

Book Delta Sigma Data Converters

Download or read book Delta Sigma Data Converters written by Steven R. Norsworthy and published by Wiley-IEEE Press. This book was released on 1996-10-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide offers a detailed treatment of the analysis, design, simulation and testing of the full range of today's leading delta-sigma data converters. Written by professionals experienced in all practical aspects of delta-sigma modulator design, Delta-Sigma Data Converters provides comprehensive coverage of low and high-order single-bit, bandpass, continuous-time, multi-stage modulators as well as advanced topics, including idle-channel tones, stability, decimation and interpolation filter design, and simulation.

Book AC to AC Converters

Download or read book AC to AC Converters written by Narayanaswamy P R Iyer and published by CRC Press. This book was released on 2019-06-03 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power electronic converters can be broadly classified as AC to DC, DC to AC, DC to DC and AC to AC converters. AC to AC converters can be further classified as AC Controllers or AC regulators, Cycloconverters and Matrix converters. AC controllers and cycloconverters are fabricated using Silicon Controlled Rectifiers (SCR) whereas matrix converters are built using semiconductor bidirectional switches. This text book provides a summary of AC to AC Converter modelling excluding AC controllers. The software Simulink® by Mathworks Inc., USA is used to develop the models of AC to AC Converters presented in this text book. The term model in this text book refers to SIMULINK model. This text book is mostly suitable for researchers and practising professional engineers in the industry working in the area of AC to AC converters. Features Provides a summary of AC to AC Converter modelling excluding AC controllers Includes models for three phase AC to three phase AC matrix converters using direct and indirect space vector modulation algorithm Presents new applications such as single and dual programmable AC to DC rectifier with derivations for output voltage Displays Hardware-in-the Loop simulation of a three phase AC to single phase AC matrix converter Provides models for three phase multilevel matrix converters, Z-source Direct and Quasi Z-source Indirect matrix converters; a model for speed control and brake by plugging of three phase induction motor and separately excited DC motors using matrix converter; a model for a new single phase and three phase sine wave direct AC to AC Converter without a DC link using three winding transformers and that for a square wave AC to square wave AC converter using a DC link; models for variable frequency, variable voltage AC to AC power supply; models for Solid State Transformers using Dual Active Bridge topology and a new direct AC to AC Converter topology; and models for cycloconverters and indirect matrix converters

Book Continuous Time Sigma Delta A D Conversion

Download or read book Continuous Time Sigma Delta A D Conversion written by Friedel Gerfers and published by Springer Science & Business Media. This book was released on 2006-02-27 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sigma-delta A/D converters are a key building block in wireless and multimedia applications. This comprehensive book deals with all relevant aspects arising during the analysis, design and simulation of the now widespread continuous-time implementations of sigma-delta modulators. The results of several years of research by the authors in the field of CT sigma-delta modulators are covered, including the analysis and modeling of different CT modulator architectures, CT/DT loop filter synthesis, a detailed error analysis of all components, and possible compensation/correction schemes for the non-ideal behavior in CT sigma-delta modulators. Guidance for obtaining low-power consumption and several practical implementations are also presented. It is shown that all the proposed new theories, architectures and possible correction techniques have been confirmed by measurements on discrete or integrated circuits. Quantitative results are also provided, thus enabling prediction of the resulting accuracy.

Book Electrotechnical Systems

Download or read book Electrotechnical Systems written by Viktor Perelmuter and published by CRC Press. This book was released on 2020-10-15 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling a gap in the literature, Electrotechnical Systems: Simulation with Simulink® and SimPowerSystemsTM explains how to simulate complicated electrical systems more easily using SimPowerSystemsTM blocks. It gives a comprehensive overview of the powerful SimPowerSystems toolbox and demonstrates how it can be used to create and investigate models of both classic and modern electrotechnical systems.Build from Circuit Elements and Blocks to System ModelsBuilding from simple to more complex topics, the book helps readers better understand the principles, features, and detailed functions of various electrical systems, such as electrical drives, power electronics, and systems for production and distribution of electrical energy. The text begins by describing the models of the main circuit elements, which are used to create the full system model, and the measuring and control blocks. It then examines models of semiconductor devices used in power electronics as well as models of DC and AC motors. The final chapter discusses the simulation of power production and transmission systems, including hydraulic turbine, steam turbine, wind, and diesel generators. The author also develops models of systems that improve the quality of electrical energy, such as active filters and various types of static compensators. Get a Deeper Understanding of Electrical Systems and How to Simulate ThemThe downloadable resources supply nearly 100 models of electrotechnical systems created using SimPowerSystems. These encompass adaptations of SimPowerSystems demonstrational models, as well as models developed by the author, including many important applications related to power electronics and electrical drives, which are not covered by the demonstrational models. In addition to showing how the models can be used, he supplies the theoretical background for each.

Book Software Defined Radio for Engineers

Download or read book Software Defined Radio for Engineers written by Alexander M. Wyglinski and published by Artech House. This book was released on 2018-04-30 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the popular Artech House classic, Digital Communication Systems Engineering with Software-Defined Radio, this book provides a practical approach to quickly learning the software-defined radio (SDR) concepts needed for work in the field. This up-to-date volume guides readers on how to quickly prototype wireless designs using SDR for real-world testing and experimentation. This book explores advanced wireless communication techniques such as OFDM, LTE, WLA, and hardware targeting. Readers will gain an understanding of the core concepts behind wireless hardware, such as the radio frequency front-end, analog-to-digital and digital-to-analog converters, as well as various processing technologies. Moreover, this volume includes chapters on timing estimation, matched filtering, frame synchronization message decoding, and source coding. The orthogonal frequency division multiplexing is explained and details about HDL code generation and deployment are provided. The book concludes with coverage of the WLAN toolbox with OFDM beacon reception and the LTE toolbox with downlink reception. Multiple case studies are provided throughout the book. Both MATLAB and Simulink source code are included to assist readers with their projects in the field.

Book AES

Download or read book AES written by and published by . This book was released on 2001 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book IEEE Transactions on Circuits and Systems

Download or read book IEEE Transactions on Circuits and Systems written by and published by . This book was released on 2005 with total page 1620 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding Delta Sigma Data Converters

Download or read book Understanding Delta Sigma Data Converters written by Shanthi Pavan and published by John Wiley & Sons. This book was released on 2017-01-24 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition introduces operation and design techniques for Sigma-Delta converters in physical and conceptual terms, and includes chapters which explore developments in the field over the last decade Includes information on MASH architectures, digital-to-analog converter (DAC) mismatch and mismatch shaping Investigates new topics including continuous-time ΔΣ analog-to-digital converters (ADCs) principles and designs, circuit design for both continuous-time and discrete-time ΔΣ ADCs, decimation and interpolation filters, and incremental ADCs Provides emphasis on practical design issues for industry professionals

Book Continuous Time Delta Sigma Modulators for High Speed A D Conversion

Download or read book Continuous Time Delta Sigma Modulators for High Speed A D Conversion written by James A. Cherry and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among analog-to-digital converters, the delta-sigma modulator has cornered the market on high to very high resolution converters at moderate speeds, with typical applications such as digital audio and instrumentation. Interest has recently increased in delta-sigma circuits built with a continuous-time loop filter rather than the more common switched-capacitor approach. Continuous-time delta-sigma modulators offer less noisy virtual ground nodes at the input, inherent protection against signal aliasing, and the potential to use a physical rather than an electrical integrator in the first stage for novel applications like accelerometers and magnetic flux sensors. More significantly, they relax settling time restrictions so that modulator clock rates can be raised. This opens the possibility of wideband (1 MHz or more) converters, possibly for use in radio applications at an intermediate frequency so that one or more stages of mixing might be done in the digital domain. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits covers all aspects of continuous-time delta-sigma modulator design, with particular emphasis on design for high clock speeds. The authors explain the ideal design of such modulators in terms of the well-understood discrete-time modulator design problem and provide design examples in Matlab. They also cover commonly-encountered non-idealities in continuous-time modulators and how they degrade performance, plus a wealth of material on the main problems (feedback path delays, clock jitter, and quantizer metastability) in very high-speed designs and how to avoid them. They also give a concrete design procedure for a real high-speed circuit which illustrates the tradeoffs in the selection of key parameters. Detailed circuit diagrams, simulation results and test results for an integrated continuous-time 4 GHz band-pass modulator for A/D conversion of 1 GHz analog signals are also presented. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits concludes with some promising modulator architectures and a list of the challenges that remain in this exciting field.

Book CMOS Sigma Delta Converters

Download or read book CMOS Sigma Delta Converters written by Jose M. de la Rosa and published by John Wiley & Sons. This book was released on 2013-03-13 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Sigma-Delta Analog-to-Digital Converters (ADCs) and a practical guide to their design in nano-scale CMOS for optimal performance. This book presents a systematic and comprehensive compilation of sigma-delta converter operating principles, the new advances in architectures and circuits, design methodologies and practical considerations − going from system-level specifications to silicon integration, packaging and measurements, with emphasis on nanometer CMOS implementation. The book emphasizes practical design issues – from high-level behavioural modelling in MATLAB/SIMULINK, to circuit-level implementation in Cadence Design FrameWork II. As well as being a comprehensive reference to the theory, the book is also unique in that it gives special importance on practical issues, giving a detailed description of the different steps that constitute the whole design flow of sigma-delta ADCs. The book begins with an introductory survey of sigma-delta modulators, their fundamentals architectures and synthesis methods covered in Chapter 1. In Chapter 2, the effect of main circuit error mechanisms is analysed, providing the necessary understanding of the main practical issues affecting the performance of sigma-delta modulators. The knowledge derived from the first two chapters is presented in the book as an essential part of the systematic top-down/bottom-up synthesis methodology of sigma-delta modulators described in Chapter 3, where a time-domain behavioural simulator named SIMSIDES is described and applied to the high-level design and verification of sigma-delta ADCs. Chapter 4 moves farther down from system-level to the circuit and physical level, providing a number of design recommendations and practical recipes to complete the design flow of sigma-delta modulators. To conclude the book, Chapter 5 gives an overview of the state-of-the-art sigma-delta ADCs, which are exhaustively analysed in order to extract practical design guidelines and to identify the incoming trends, design challenges as well as practical solutions proposed by cutting-edge designs. Offers a complete survey of sigma-delta modulator architectures from fundamentals to state-of-the art topologies, considering both switched-capacitor and continuous-time circuit implementations Gives a systematic analysis and practical design guide of sigma-delta modulators, from a top-down/bottom-up perspective, including mathematical models and analytical procedures, behavioural modeling in MATLAB/SIMULINK, macromodeling, and circuit-level implementation in Cadence Design FrameWork II, chip prototyping, and experimental characterization. Systematic compilation of cutting-edge sigma-delta modulators Complete description of SIMSIDES, a time-domain behavioural simulator implemented in MATLAB/SIMULINK Plenty of examples, case studies, and simulation test benches, covering the different stages of the design flow of sigma-delta modulators A number of electronic resources, including SIMSIDES, the statistical data used in the state-of-the-art survey, as well as many design examples and test benches are hosted on a companion website Essential reading for Researchers and electronics engineering practitioners interested in the design of high-performance data converters integrated in nanometer CMOS technologies; mixed-signal designers.

Book Smart Grid as a Solution for Renewable and Efficient Energy

Download or read book Smart Grid as a Solution for Renewable and Efficient Energy written by Ahmad, Ayaz and published by IGI Global. This book was released on 2016-04-20 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the need for proficient power resources continues to grow, it is becoming increasingly important to implement new strategies and technologies in energy distribution to meet consumption needs. The employment of smart grid networks assists in the efficient allocation of energy resources. Smart Grid as a Solution for Renewable and Efficient Energy features emergent research and trends in energy consumption and management, as well as communication techniques utilized to monitor power transmission and usage. Emphasizing developments and challenges occurring in the field, this book is a critical resource for researchers and students concerned with signal processing, power demand management, energy storage procedures, and control techniques within smart grid networks.

Book Design of VCO based ADCs

    Book Details:
  • Author : Vishnu Unnikrishnan
  • Publisher : Linköping University Electronic Press
  • Release : 2017-03-28
  • ISBN : 9176856240
  • Pages : 52 pages

Download or read book Design of VCO based ADCs written by Vishnu Unnikrishnan and published by Linköping University Electronic Press. This book was released on 2017-03-28 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's complex electronic systems with billions of transistors on a single die are enabled by the aggressive scaling down of the device feature size at an exponential rate as predicted by the Moore's law. Digital circuits benefit from technology scaling to become faster, more energy efficient as well as more area efficient as the feature size is scaled down. Moreover, digital design also benefits from mature CAD tools that simplify the design and cross-technology porting of complex systems, leveraging on a cell-based design methodology. On the other hand, the design of analog circuits is getting increasingly difficult as the feature size scales down into the deep nanometer regime due to a variety of reasons like shrinking voltage headroom, reducing intrinsic gain of the devices, increasing noise coupling between circuit nodes due to shorter distances etc. Furthermore, analog circuits are still largely designed with a full custom design ow that makes their design and porting tedious, slow, and expensive. In this context, it is attractive to consider realizing analog/mixed-signal circuits using standard digital components. This leads to scaling-friendly mixed-signal blocks that can be designed and ported using the existing CAD framework available for digital design. The concept is already being applied to mixed-signal components like frequency synthesizers where all-digital architectures are synthesized using standard cells as basic components. This can be extended to other mixed-signal blocks like digital-to-analog and analog to- digital converters as well, where the latter is of particular interest in this thesis. A voltage-controlled oscillator (VCO)-based analog-to-digital converter (ADC) is an attractive architecture to achieve all-digital analog-to digital conversion due to favorable properties like shaping of the quantization error, inherent anti-alias filtering etc. Here a VCO operates as a signal integrator as well as a quantizer. A converter employing a ring oscillator as the VCO lends itself to an all-digital implementation. In this dissertation, we explore the design of VCO-based ADCs synthesized using digital standard cells with the long-term goal of achieving high performance data converters built from low accuracy switch components. In a first step, an ADC is designed using vendor supplied standard cells and fabricated in a 65 nm CMOS process. The converter delivers an 8-bit ENOB over a 25 MHz bandwidth while consuming 3.3 mW of power resulting in an energy efficiency of 235 fJ/step (Walden FoM). Then we utilize standard digital CAD tools to synthesize converter designs that are fully described using a hardware description language. A polynomial-based digital post-processing scheme is proposed to correct for the VCO nonlinearity. In addition, pulse modulation schemes like delta modulation and asynchronous sigma-delta modulation are used as a signal pre-coding scheme, in an attempt to reduce the impact of VCO nonlinearity on converter performance. In order to investigate the scaling benefits of all-digital data conversion, a VCO-based converter is designed in a 28 nm CMOS process. The design delivers a 13.4-bit ENOB over a 5 MHz bandwidth achieving an energy efficiency of 4.3 fJ/step according to post-synthesis schematic simulation, indicating that such converters have the potential of achieving good performance in deeply scaled processes by exploiting scaling benefits. Furthermore, large conversion errors caused by non-ideal sampling of the oscillator phase are studied. An encoding scheme employing ones counters is proposed to code the sampled ring oscillator output into a number, which is resilient to a class of sampling induced errors modeled by temporal reordering of the transitions in the ring. The proposed encoding reduces the largest error caused by random reordering of up to six subsequent bits in the sampled signal from 31 to 2 LSBs. Finally, the impact of process, voltage, and temperature (PVT) variations on the performance while operating the converter from a subthreshold supply is investigated. PVT-adaptive solutions are suggested as a means to achieve energy-efficient operation over a wide range of PVT conditions.