EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Comparative Study of Flowback Rate and Pressure Transient Behaviour in Multifractured Horizontal Wells

Download or read book A Comparative Study of Flowback Rate and Pressure Transient Behaviour in Multifractured Horizontal Wells written by Majid A. Abbasi and published by . This book was released on 2013 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tight reservoirs stimulated by multistage hydraulic fracturing are commonly characterized by analyzing the hydrocarbon production data. However, analyzing the hydrocarbon production data can best be applied to estimate the effective fracture-matrix interface, and is not enough for a full fracture characterization. Before flowback, the induced fractures are filled with the compressed water. Therefore, analyzing the early-time rate and pressure of fracturing water and gas/oil should in principle be able to partly characterize the induced fractures, and complement the conventional production data analysis. We develop an analytical model to compare the pressure/rate transient behaviour of multifractured horizontal wells (MFHW) completed in one tight oil and two tight gas wells. We also construct a series of diagnostic plots to study the flowback behaviour of 18 MFHW completed in the Horn River basin. We observe unique signatures that suggest initial free gas in the fracture network before starting the flowback operation.

Book Numerical Simulation of Pressure Transient Analysis in Tight Formation and Field Data Categorization and Typical Well Production Data Analysis

Download or read book Numerical Simulation of Pressure Transient Analysis in Tight Formation and Field Data Categorization and Typical Well Production Data Analysis written by Yue Zhu and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Pressure Transient Testing and Productivity Analysis for Horizontal Wells

Download or read book Pressure Transient Testing and Productivity Analysis for Horizontal Wells written by Yueming Cheng and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This work studied the productivity evaluation and well test analysis of horizontal wells. The major components of this work consist of a 3D coupled reservoir/wellbore model, a productivity evaluation, a deconvolution technique, and a nonlinear regression technique improving horizontal well test interpretation. A 3D coupled reservoir/wellbore model was developed using the boundary element method for realistic description of the performance behavior of horizontal wells. The model is able to flexibly handle multiple types of inner and outer boundary conditions, and can accurately simulate transient tests and long-term production of horizontal wells. Thus, it can serve as a powerful tool in productivity evaluation and analysis of well tests for horizontal wells. Uncertainty of productivity prediction was preliminarily explored. It was demonstrated that the productivity estimates can be distributed in a broad range because of the uncertainties of reservoir/well parameters. A new deconvolution method based on a fast-Fourier-transform algorithm is presented. This new technique can denoise "noisy" pressure and rate data, and can deconvolve pressure drawdown and buildup test data distorted by wellbore storage. For cases with no rate measurements, a "blind" deconvolution method was developed to restore the pressure response free of wellbore storage distortion, and to detect the afterflow/unloading rate function using Fourier analysis of the observed pressure data. This new deconvolution method can unveil the early time behavior of a reservoir system masked by variable-wellbore-storage distortion, and thus provides a powerful tool to improve pressure transient test interpretation. The applicability of the method is demonstrated with a variety of synthetic and actual field cases for both oil and gas wells. A practical nonlinear regression technique for analysis of horizontal well testing is presented. This technique can provide accurate and reliable estimation of well-reservoir parameters if the downhole flow rate data are available. In the situation without flow rate measurement, reasonably reliable parameter estimation can be achieved by using the detected flow rate from blind deconvolution. It has the advantages of eliminating the need for estimation of the wellbore storage coefficient and providing reasonable estimates of effective wellbore length. This technique provides a practical tool for enhancement of horizontal well test interpretation, and its practical significance is illustrated by synthetic and actual field cases.

Book Modeling of Multi Stage Fractured Horizontal Wells

Download or read book Modeling of Multi Stage Fractured Horizontal Wells written by Shanshan Yao and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analytical Modeling of Multi Fractured Horizontal Wells in Heterogeneous Unconventional Reservoirs

Download or read book Analytical Modeling of Multi Fractured Horizontal Wells in Heterogeneous Unconventional Reservoirs written by Jie Zeng and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current analytical models for multi-fractured horizontal wells (MFHW) generally neglect reservoir heterogeneity, typical seepage characters of unconventional reservoir, partially penetrating fracture and various fracture damage mechanisms. In this thesis, three linear flow models have been developed to facilitate pressure and rate behavior analysis of shale, tight sand and unconventional reservoir with damaged fractures. These models are validated by comparing with KAPPA Ecrin and are more accurate than previous linear flow models in modeling partially penetrating cases. Field data are analyzed and results prove the reliability of these models. The first model is for heterogeneous shale reservoir with multiple gas transport mechanisms. It subdivides the reservoir into seven parts, namely, two upper/lower regions, two outer regions, two inner regions, and hydraulic fracture region. Fracture interference is simulated by locating a no-flow boundary between two adjacent fractures. The locations of these boundaries are determined based on the boundary's pressure to satisfy the no-flow assumption. Adsorption/desorption, gas slippage and diffusion effects are included for rigorous modeling of flow in shale. Sensitivity analysis results suggest that larger desorption coefficient causes smaller pressure and its derivative as a larger proportion of gas is desorbed in formation and contributes to productivity. The influences of other parameters, such as matrix II permeability, matrix block size, secondary fracture permeability, hydraulic fracture conductivity, and fracture pattern are also discussed. The second model is for heterogeneous tight sand reservoir with threshold pressure gradient (TPG). The linear flow sub-regions are the same as those of the first model. TPG and pressure drop within the horizontal wellbore are included. Simulation results suggest that TPG affects middle-late time behaviors. Greater TPG results in higher pressure drop and accelerates production decline. But this influence is marginal when TPG is small. Effects of other parameters, such as formation permeability, fracture length, conductivity, and wellbore storage are also investigated. The third model is for heterogeneous reservoir with various fracture damage. In this model, the following possible fracture damage situations are discussed: (1) choked fracture damage (2) partially propped fracture, (3) fracturing fluid leak-off damage, (4) dual or multiple damage effects. Simulation results indicate that choked frature damage influences early-mid time performance. Partially propped section within fracture dominates formation linear flow regime. Only severe matrix impairment near fracture face can have noticeable effects on pressure and rate response. A new parameter, skin factor ratio, is applied to describe the relative magnitude of multiple damage mechanisms. Reservoir heterogeneity and fracture damage make the pressure and rate behaviors deviate significantly from undamaged one but one can distinguish major damage mechanisms even in heterogeneous reservoir.

Book Pressure transient analysis of wells with horizontal drainholes

Download or read book Pressure transient analysis of wells with horizontal drainholes written by Stanford University. Petroleum Research Institute and published by . This book was released on 1986 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Investigation of Transient Flow Responses in Fractured Tight Oil Wells

Download or read book Numerical Investigation of Transient Flow Responses in Fractured Tight Oil Wells written by Min Yue and published by . This book was released on 2016 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing demand of global energy and limited conventional resources force the petroleum industry to shift their focus towards the low permeability reservoirs such as shale or tight rock reservoir. Multi-fractured horizontal wells have economically unlocked the massive hydrocarbon resources from unconventional reservoirs. Horizontal drilling and hydraulic fracturing create a complex fracture network that could enhance reservoir contact area to achieve economic production rates. In this study, we compute the transient response in a segment of a hydraulically fractured horizontal well using a triple-porosity model. Impacts of capillary discontinuity (fracture face-effect) and some limitations in analytical models such as sequential flow, single-phase flow and fully-connected symmetric fractures are investigated. We find that the uncertainty in model history-matched parameters and assumptions associated with analytical models could potentially over- or under-estimate production by up to 30%. History-matching with analytical models alone and the assumption of uniformly-spaced fracture stages would tend to overestimate long-term production forecast. In contrast, the assumption of no solution gas in tight oil reservoir leads to underestimation of reservoir properties such as length of fracture and permeability. Moreover, the simulated production data indicates that fracture face-effect results in rapid production decline. Lower capillary contrast between fracture and matrix results in less water blockage and higher production.

Book Unconventional Reservoir Rate Transient Analysis

Download or read book Unconventional Reservoir Rate Transient Analysis written by Christopher R. Clarkson and published by Gulf Professional Publishing. This book was released on 2021-06-15 with total page 1144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unconventional Reservoir Rate-Transient Analysis provides petroleum engineers and geoscientists with the first comprehensive review of rate-transient analysis (RTA) methods as applied to unconventional reservoirs. Volume One—Fundamentals, Analysis Methods, and Workflow is comprised of five chapters which address key concepts and analysis methods used in RTA. This volume overviews the fundamentals of RTA, as applied to low-permeability oil and gas reservoirs exhibiting simple reservoir and fluid characteristics.Volume Two—Application to Complex Reservoirs, Exploration and Development is comprised of four chapters that demonstrate how RTA can be applied to coalbed methane reservoirs, shale gas reservoirs, and low-permeability/shale reservoirs exhibiting complex behavior such as multiphase flow. Use of RTA to assist exploration and development programs in unconventional reservoirs is also demonstrated. This book will serve as a critical guide for students, academics, and industry professionals interested in applying RTA methods to unconventional reservoirs. - Gain a comprehensive review of key concepts and analysis methods used in modern rate-transient analysis (RTA) as applied to low-permeability ("tight") oil and gas reservoirs - Improve your RTA methods by providing reservoir/hydraulic fracture properties and hydrocarbon-in-place estimates for unconventional gas and light oil reservoirs exhibiting complex reservoir behaviors - Understand the provision of a workflow for confident application of RTA to unconventional reservoirs

Book Mechanics of Hydraulic Fracturing

Download or read book Mechanics of Hydraulic Fracturing written by Ching H. Yew and published by Gulf Professional Publishing. This book was released on 2014-09-25 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised to include current components considered for today's unconventional and multi-fracture grids, Mechanics of Hydraulic Fracturing, Second Edition explains one of the most important features for fracture design — the ability to predict the geometry and characteristics of the hydraulically induced fracture. With two-thirds of the world's oil and natural gas reserves committed to unconventional resources, hydraulic fracturing is the best proven well stimulation method to extract these resources from their more remote and complex reservoirs. However, few hydraulic fracture models can properly simulate more complex fractures. Engineers and well designers must understand the underlying mechanics of how fractures are modeled in order to correctly predict and forecast a more advanced fracture network. Updated to accommodate today's fracturing jobs, Mechanics of Hydraulic Fracturing, Second Edition enables the engineer to: - Understand complex fracture networks to maximize completion strategies - Recognize and compute stress shadow, which can drastically affect fracture network patterns - Optimize completions by properly modeling and more accurately predicting for today's hydraulic fracturing completions - Discusses the underlying mechanics of creating a fracture from the wellbore - Enhanced to include newer modeling components such as stress shadow and interaction of hydraulic fracture with a natural fracture, which aids in more complex fracture networks - Updated experimental studies that apply to today's unconventional fracturing cases

Book Development of Unconventional Reservoirs

Download or read book Development of Unconventional Reservoirs written by Reza Rezaee and published by MDPI. This book was released on 2020-04-16 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for energy is increasing and but the production from conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions, the most reasonable source is from unconventional reservoirs. As the name “unconventional” implies, different and challenging approaches are required to characterize and develop these resources. This Special Issue covers some of the technical challenges for developing unconventional energy sources from shale gas/oil, tight gas sand, and coalbed methane.

Book Well Test Analysis

Download or read book Well Test Analysis written by Dominique Bourdet and published by Elsevier. This book was released on 2002-08-21 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on well test analysis, and the use of advanced interpretation models is volume 3 in the series Handbook of Petroleum Exploration and Production.The chapters in the book are: Principles of Transient Testing, Analysis Methods, Wellbore Conditions, Effect of Reservoir Heterogeneities on Well Responses, Effect of Reservoir Boundaries on Well Responses, Multiple Well Testing, Application to Gas Reservoirs, Application to Multiphase Reservoirs, Special Tests, Practical Aspects of Well Test Interpretation.

Book Shale Oil and Shale Gas Resources

Download or read book Shale Oil and Shale Gas Resources written by José A. Torres and published by MDPI. This book was released on 2020-05-23 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multidisciplinary book covers a wide range of topics addressing critical challenges for advancing the understanding and management of shale oil and shale gas resources. Both fundamental and practical issues are considered. By covering a variety of technical topics, we aim to contribute to building a more integrated perspective to meet major challenges faced by shale resources. Combining complementary techniques and examining multiple sources of data serve to advance our current knowledge about these unconventional reservoirs. The book is a result of interdisciplinary and collaborative work. The content includes contributions authored by active scientists with ample expertise in their fields. Each article was carefully peer-reviewed by researchers, and the editorial process was performed by an experienced team of Senior Editors, Guest Editors, Topic Editors, and Editorial Board Members. The first part is devoted to fundamental topics, mostly investigated on the laboratory scale. The second part elaborates on larger scales (at near-wellbore and field scales). Finally, two related technologies, which could be relevant for shale plays applications, are presented. With this Special Issue, we provide a channel for sharing information and lessons learned collected from different plays and from different disciplines.

Book Modelling Rock Fracturing Processes

Download or read book Modelling Rock Fracturing Processes written by Baotang Shen and published by Springer Nature. This book was released on 2020-05-06 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second edition of the well-known textbook Modelling Rock Fracturing Processes. The new and extended edition provides the theoretical background of rock fracture mechanics used for modelling of 2-D and 3-D geomechanics problems and processes. Fundamentals of rock fracture mechanics integrated with experimental studies of rock fracturing processes are highlighted. The computer programs FRACOD 2D and 3D are used to analyse fracture initiation and propagation for the three fracture modes: Mode I, II and III. Coupled fracture modelling with other continuous and distinct element codes including FLAC, PFC, RFPA, TOUGH are also described. A series of applications of fracture modelling with importance for modern society is presented and discussed by distinguished rock fracture modelling experts.

Book Fundamentals of Reservoir Engineering

Download or read book Fundamentals of Reservoir Engineering written by L.P. Dake and published by Elsevier. This book was released on 1983-01-01 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is fast becoming the standard text in its field", wrote a reviewer in the Journal of Canadian Petroleum Technology soon after the first appearance of Dake's book. This prediction quickly came true: it has become the standard text and has been reprinted many times. The author's aim - to provide students and teachers with a coherent account of the basic physics of reservoir engineering - has been most successfully achieved. No prior knowledge of reservoir engineering is necessary. The material is dealt with in a concise, unified and applied manner, and only the simplest and most straightforward mathematical techniques are used. This low-priced paperback edition will continue to be an invaluable teaching aid for years to come.

Book Unconventional Reservoirs  Rate and Pressure Transient Analysis Techniques

Download or read book Unconventional Reservoirs Rate and Pressure Transient Analysis Techniques written by Amin Taghavinejad and published by Springer. This book was released on 2021-09-14 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a succinct overview on the application of rate and pressure transient analysis in unconventional petroleum reservoirs. It begins by introducing unconventional reservoirs, including production challenges, and continues to explore the potential benefits of rate and pressure analysis methods. Rate transient analysis (RTA) and pressure transient analysis (PTA) are techniques for evaluating petroleum reservoir properties such as permeability, original hydrocarbon in-place, and hydrocarbon recovery using dynamic data. The brief introduces, describes and classifies both techniques, focusing on the application to shale and tight reservoirs. Authors have used illustrations, schematic views, and mathematical formulations and code programs to clearly explain application of RTA and PTA in complex petroleum systems. This brief is of an interest to academics, reservoir engineers and graduate students.

Book Computational Methods for Multiphase Flows in Porous Media

Download or read book Computational Methods for Multiphase Flows in Porous Media written by Zhangxin Chen and published by SIAM. This book was released on 2006-04-01 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.

Book Advanced Modeling with the MATLAB Reservoir Simulation Toolbox

Download or read book Advanced Modeling with the MATLAB Reservoir Simulation Toolbox written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2021-11-25 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many leading experts contribute to this follow-up to An Introduction to Reservoir Simulation using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). It introduces more advanced functionality that has been recently added to the open-source MRST software. It is however a self-contained introduction to a variety of modern numerical methods for simulating multiphase flow in porous media, with applications to geothermal energy, chemical enhanced oil recovery (EOR), flow in fractured and unconventional reservoirs, and in the unsaturated zone. The reader will learn how to implement new models and algorithms in a robust, efficient manner. A large number of numerical examples are included, all fully equipped with code and data so that the reader can reproduce the results and use them as a starting point for their own work. Like the original textbook, this book will prove invaluable for researchers, professionals and advanced students using reservoir simulation methods. This title is available as Open Access on Cambridge Core.