EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book PEM Fuel Cell Electrocatalysts and Catalyst Layers

Download or read book PEM Fuel Cell Electrocatalysts and Catalyst Layers written by Jiujun Zhang and published by Springer Science & Business Media. This book was released on 2008-08-26 with total page 1147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Book A Characterization Study on Catalyst Layers in Proton Exchange Membrane Fuel Cells

Download or read book A Characterization Study on Catalyst Layers in Proton Exchange Membrane Fuel Cells written by Luyue Li and published by . This book was released on 2016 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes the work for the catalyst layer (CL) characterization study of proton exchange membranes (PEM) for fuel cells. In particular, both the structure and performance of catalyst layers with alternative ionomers were studied. Structure wise, the morphology, surface area and pore size distribution studies were accomplished with scanning electron microscopy (SEM), transmission electron microscope (TEM) and nitrogen adsorption processed through Brunauer--Emmett--Teller (BET) and Barrett- Joyner-Halenda (BJH) theory. Water uptake isotherms of the CLs have been developed under well controlled relative humidity (RH) levels. The performance characterization focuses on polarization study, catalyst layer proton conductivity measurement and estimation of the proton conduction tortuosity. Also, a thermal investigation between various components of the catalyst layer was performed. Two different sets of CLs were examined, the in-house fabricated 3M ionomer CLs and free-standing 3M CLs directly provided from the 3M Company. A characteristic comparison of the structure and electrochemical performance have been carried out, along with further discussion on the formation of CLs containing 3M polytetrafluoroethylene (PTFE) ionomer. Our data revealed that higher ionomer to carbon (I/C) ratio reduced the amount of micro- , meso- and macropores. This allowed the construction of a more completely developed ionic transport network, however, could potentially hinder the mass transfer. Also, our study showed that higher Pt:C ratio lead to a more intense Pt agglomeration. The CL's porosity was strongly affected by such Pt clustering. Furthermore, energy dispersive X-ray analysis (EDS) revealed that the 3M ionomer preferred attaching to the carbon surface over the Pt particles. According to our polarization study, in contrast of tradition Nafion fuel cells, the 3M fuel cells reached its optimal performance at 60%-70% RH and suffered dramatic mass transfer losses at saturated humidity level. Therefore, the 3M fuel cells are able to function fully under drier conditions than the Nafion units. However, the high sensitivity on the cells' water content requires efficient water management during operation, especially at higher current density. Polarization study also showed an optimal 3M ionomer loading of 36 wt.% at 30:70 Pt:C ratio, which is similar to traditional Nafion fuel cells.

Book Principles of Fuel Cells

Download or read book Principles of Fuel Cells written by Xianguo Li and published by CRC Press. This book was released on 2005-12-22 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is engineering oriented and covers a large variety of topics ranging from fundamental principles to performance evaluation and applications. It is written systematically and completely on the subject with a summary of state-of-the-art fuel cell technology, filling the need for a timely resource. This is a unique book serving academic researchers, engineers, as well as people working in the fuel cell industry. It is also of substantial interest to students, engineers, and scientists in mechanical engineering, chemistry and chemical engineering, electrochemistry, materials science and engineering, power generation and propulsion systems, and automobile engineering.

Book PEM Fuel Cell Electrocatalysts and Catalyst Layers

Download or read book PEM Fuel Cell Electrocatalysts and Catalyst Layers written by Jiujun Zhang and published by Springer. This book was released on 2010-12-14 with total page 1137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Book Optimization and Characterization of Proton exchange Membrane Fuel Cells Based on Novel Hydrocarbon Ionomers

Download or read book Optimization and Characterization of Proton exchange Membrane Fuel Cells Based on Novel Hydrocarbon Ionomers written by Hien Nguyen and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Hydrogen is a critical energy carrier for defossilising the transportation sector. Proton-exchange membrane (PEM) fuel cells represent a pivotal technology for heavy-duty vehicles, in particular. These fuel cells enable the conversion of hydrogen into electrical energy, with the only by-product being water. State-of-the-art PEM fuel cells rely on perfluorosulfonic acid (PFSA) as cation-exchange material. The synthesis of PFSAs is complex, hazardous and expensive, which limits their production to a few select facilities globally, driving up costs even at high volumes. In recent years, there has been a growing concern over the high level of irreversible environmental damage caused by perfluorinated substances. Leading corporations, such as DuPont and 3M, have faced numerous lawsuits for over a decade. To address these concerns, 3M announced in December 2022 that it would exit the perfluorinated substances business by the end of 2025. An alternative to PFSAs is hydrocarbon ionomers, which offer potentially lower material costs, high thermo-mechanical stability at high operating temperatures, and reduced environmental concerns. While replacing PFSA with hydrocarbon ionomers can make fuel cells more sustainable, it has been observed in earlier studies to compromise performance. The primary objective of this study was to bridge the performance and knowledge gap between hydrocarbon and PFSA-based PEM fuel cells. This was achieved by employing a recently commercialized ionomer called "Pemion". Leveraging this innovative material, this work succeeded in developing a fully hydrocarbon-based fuel cell with outstanding performance, representing a significant breakthrough in 2021. To realize this outcome, the study began with a comprehensive literature review,[1] that identified the most significant limitations associated with hydrocarbon-based fuel cells and proposed strategies for their future commercialization. Systematic know-how transfer was then implemented from the field of PFSA-based materials, encompassing process adaptations and extensive optimization of the catalyst layer to advance towards the state-of-the-art performance of PFSA-based fuel cells. A combination of an ultra-thin monolithic membrane (7 μm) and an optimized ink composition with a platinum-cobalt catalyst enabled a comparable peak performance (> 2 W cm-2) to state-of-the-art PFSA reference cell under optimized laboratory conditions: H2/O2, 80 °C, fully humidified gases and ambient pressure. Electrochemical characterizations under various operating conditions show that the hydrocarbon-based cells' performance is more sensitive to changes in relative humidity than the PFSA reference cell.[2] Based on the proof-of-concept, two follow-up improvement pathways have been identified to improve performance and understanding in hydrocarbon-based fuel cells. First, ionomer gradient catalyst layers have been introduced for hydrocarbon-based fuel cells.[3] A two-fold higher ionomer content compared to the optimized one in 25 % of the catalyst layer at the membrane interface improved the performance by up to 35 % in application-relevant conditions, i.e. reduced humidity, while maintaining high peak performance under the same conditions. Second, different conditioning procedures were investigated on hydrocarbon-based fuel cells for the first time. A novel conditioning procedure developed for hydrocarbon-based fuel cells was found to improve the typically lower performance at low current densities of hydrocarbon-based fuel cells the most efficiently.[4] Based on the findings, fuel cells that use Pemion have been shown to perform similarly to those that use PFSA, but further improvements are required for their application in fuel-cell electric vehicles. To continue improving these fuel cells, it is important to find a balance between effective proton conductivity and mechanical integrity of the ionomer in the catalyst layer for efficient performance under different humidity levels. Reference: [1] Hien Nguyen, Carolin Klose, Lukas Metzler, Severin Vierrath, and Matthias Breitwieser. Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers: An engineering perspective. Advanced Energy Materials, 12(12):2103559, 2022. doi:10.1002/aenm.202103559. [2] Hien T. T. Nguyen, Florian Lombeck, Claudia Schwarz, Philipp A. Heizmann, Michael Adamski, Hsu-Feng Lee, Benjamin Britton, Steven Holdcroft, Severin Vierrath, and Matthias Breitwieser. Hydrocarbon-based pemionTM proton exchange membrane fuel cells with state-of-the-art performance. Sustainable Energy & Fuels, (5):3687-3699, 2021. doi:10.1039/D1SE00556A. [3] Hien T. T. Nguyen, Dilara Sultanova, Philipp A. Heizmann, Severin Vierrath, and Matthias Breitwieser. Improving the efficiency of fully hydrocarbon-based proton-exchange membrane fuel cells by ionomer content gradients in cathode catalyst layers. Materials Advances, 2022. doi:10.1039/d2ma00761d. [4] Hien Nguyen, Julian Stiegeler, Hannes Liepold, Claudia Schwarz, Severin Vierrath, and Matthias Breitwieser. A comparative study of conditioning methods for hydrocarbon-based proton-exchange membrane fuel cells for improved performance. doi:https://doi.org/10.1002/ente.202300202

Book Polymer Electrolyte Fuel Cell Durability

Download or read book Polymer Electrolyte Fuel Cell Durability written by Felix N. Büchi and published by Springer Science & Business Media. This book was released on 2009-02-08 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.

Book PEM Fuel Cell Failure Mode Analysis

Download or read book PEM Fuel Cell Failure Mode Analysis written by Haijiang Wang and published by CRC Press. This book was released on 2011-08-25 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: PEM Fuel Cell Failure Mode Analysis presents a systematic analysis of PEM fuel cell durability and failure modes. It provides readers with a fundamental understanding of insufficient fuel cell durability, identification of failure modes and failure mechanisms of PEM fuel cells, fuel cell component degradation testing, and mitigation strategies against degradation. The first several chapters of the book examine the degradation of various fuel cell components, including degradation mechanisms, the effects of operating conditions, mitigation strategies, and testing protocols. The book then discusses the effects of different contamination sources on the degradation of fuel cell components and explores the relationship between external environment and the degradation of fuel cell components and systems. It also reviews the correlation between operational mode, such as start-up and shut-down, and the degradation of fuel cell components and systems. The last chapter explains how the design of fuel cell hardware relates to failure modes. Written by international scientists active in PEM fuel cell research, this volume is enriched with practical information on various failure modes analysis for diagnosing cell performance and identifying failure modes of degradation. This in turn helps in the development of mitigation strategies and the increasing commercialization of PEM fuel cells.

Book PEM Fuel Cell Testing and Diagnosis

Download or read book PEM Fuel Cell Testing and Diagnosis written by Jiujun Zhang and published by Newnes. This book was released on 2013-01-22 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: PEM Fuel Cell Testing and Diagnosis covers the recent advances in PEM (proton exchange membrane) fuel cell systems, focusing on instruments and techniques for testing and diagnosis, and the application of diagnostic techniques in practical tests and operation. This book is a unique source of electrochemical techniques for researchers, scientists and engineers working in the area of fuel cells. Proton exchange membrane fuel cells are currently considered the most promising clean energy-converting devices for stationary, transportation, and micro-power applications due to their high energy density, high efficiency, and environmental friendliness. To advance research and development of this emerging technology, testing and diagnosis are an essential combined step. This book aids those efforts, addressing effects of humidity, temperature and pressure on fuel cells, degradation and failure analysis, and design and assembly of MEAs, single cells and stacks. Provides fundamental and theoretical principles for PEM fuel cell testing and diagnosis. Comprehensive source for selecting techniques, experimental designs and data analysis Analyzes PEM fuel cell degradation and failure mechanisms, and suggests failure mitigation strategies Provides principles for selecting PEM fuel cell key materials to improve durability

Book High Temperature Polymer Electrolyte Membrane Fuel Cells

Download or read book High Temperature Polymer Electrolyte Membrane Fuel Cells written by Qingfeng Li and published by Springer. This book was released on 2015-10-15 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.

Book Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells

Download or read book Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells written by Jian Zhao and published by . This book was released on 2019 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: The structure of the catalyst layers (CLs) has a decisive impact on the performance, durability, and cost of polymer electrolyte membrane (PEM) fuel cells - these are the main technical challenges to the commercialization of PEM fuel cells. The porous CL conventionally consists of carbon-based platinum (Pt/C) and ionomer (Nafion polymer). An ideal CL should maintain the desired structure with sufficient gas diffusion and water removal channels (pores), proton transport media (ionomer), electron travel pathways (catalyst particles), and optimal three-phase boundaries (TPBs) where electrochemical reaction occurs (reaction sites). Practically, the CL is formed during the fabrication process which determines the physical structures, often represented by porosity, mean pore size, pore size distribution (PSD) and specific surface area. The physical structures, in turn, determine the effective transport properties such as effective mass diffusion coefficient and permeability for the reactant in the CLs. However, there is still no clear understanding of what is the optimal structure for the CLs. To investigate the structure of CLs, three aspects are studied in the present thesis work: (i) the effect of fabrication process on the resulting structure, (ii) the effect of the CL structure on its macro-properties, and (iii) the effect of the structure and macro-properties on the mass transport phenomena and the associated cell performance. Many factors including fabrication techniques and CL compositions have a significant impact on the structure formation of CLs. However, how these factors affect the structure is still unclear. Additionally, there lacks experimental characterization of the structure such as porosity, PSD, specific surface area, mean pore size, and surface fractal dimension, as well as mass transport properties such as effective diffusion coefficient and gas permeability for the CLs in literature. With the experimentally determined structural and mass transport parameters of the CLs and the associated electrodes, the mass transport phenomena in PEM fuel cells can be quantitatively analyzed. In the present thesis work, the CL pore structure is experimentally characterized by the method of standard porosimetry (MSP), which is established based on the phenomenon of capillary equilibrium in the wetted porous materials. By the means of MSP, a comprehensive characterization of the structure in terms of porosity, PSD, specific surface area, mean pore size, and surface fractal dimension is obtained. In addition, the effective diffusion coefficient of the CL is studied by the modified Loschmidt Cell, built based on the Fick's law of diffusion. The parameters including effective diffusion coefficient, diffusion resistivity, and its relation with the porosity and mean pore size is investigated. Further, the permeability is measured based on Darcy's law via a custom-engineered apparatus developed in my thesis work. The effect of Pt loading, temperature, flow rate, and gas species is explored in this thesis study. With the experimentally determined pore structure characterization and mass transport properties, a numerical study is performed for the better understanding of the mass transport mechanisms in the porous electrodes. The cell performance conducted in our lab is also reported in the present thesis for a better understanding of the ex-situ experiment and a comparison with the numerical modeling. The experimental and numerical studies presented in the present thesis work is of great significance to (i) understand the structure of the CLs, (ii) to understand the relation between the structure and the mass transport properties such as the effective diffusion coefficient and permeability, and (iii) to understand the effect of the structural parameters and mass transport properties on the mass transport phenomena and hence the cell performance in the PEM fuel cells.

Book Fully Hydrocarbon Ionomer Catalyst Layers in Proton  and Anion exchange Membrane Fuel Cells

Download or read book Fully Hydrocarbon Ionomer Catalyst Layers in Proton and Anion exchange Membrane Fuel Cells written by Benjamin Britton and published by . This book was released on 2018 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The structure and morphology of fuel cell catalyst layers and concomitant system properties, particularly mass transport, were investigated through electrochemical and physical characterization techniques. Catalyst layers designed for proton-exchange membrane fuel cells (PEMFCs) incorporated a hydrocarbon ionomer (sP4c) soluble in low-boiling solvents. These were used to probe the property alterations effected by increasing ionomer coverage within the catalyst layer, and also to measure the impact an extremely small quantities (0.38 wt%) of a commonly employed high-boiling solvent, DMF, in the catalyst ink. High-boiling solvents are difficult to eliminate during electrode formation, and resultant solvent-annealed catalyst layers lost electrocatalytic surface area, resulting in markedly greater kinetic losses compared to catalyst layers formed without high-boiling solvents. Catalyst layers designed for anion-exchange membrane fuel cells (AEMFCs) incorporating hydrocarbon ionomer in the catalyst layer (FAA-3) requiring high-boiling solvent (NMP, 2.3 wt% of total solvent) were formed over a broad array of conditions. Catalyst layers formed slowly at high temperatures to drive off high-boiling solvent displayed significantly enhanced mesoporosity, relating to enhanced transport characteristics, over solvent-annealed analogues with low mesoporosity, despite comparable total volumes. The impacts of solvent annealing on AEMFC electrode properties and resultant achievable power density and degradation were disproportionate compared to the similar PEMFC study. A new methodology for fuel cell membrane-electrode assembly construction, direct membrane deposition (DMD), enables lower interfacial resistances and enhanced water transport for a given thickness of membrane. These are desired properties for both PEMFCs and AEMFCs. Initially developed with inkjet printers designed for single-cell biological printing applications, this method was adapted to spray-coating systems in order to address issues with fuel and electrical crossover, suitability for hydrocarbon ionomers, and scalability / large-scale reproducibility. A perfluorinated sulfonic acid ionomer reference material (Nafion D520) was employed for direct comparison to initial methods. Highly reproducible DMDs with low fuel and electrical crossover resulted.

Book Polymer Electrolyte Fuel Cells

Download or read book Polymer Electrolyte Fuel Cells written by Alejandro A. Franco and published by CRC Press. This book was released on 2016-04-19 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related

Book Electrochemical Impedance Spectroscopy in PEM Fuel Cells

Download or read book Electrochemical Impedance Spectroscopy in PEM Fuel Cells written by Xiao-Zi (Riny) Yuan and published by Springer Science & Business Media. This book was released on 2009-11-25 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Electrochemical Impedance Spectroscopy in PEM Fuel Cells" discusses one of the most powerful and useful diagnostic tools for various aspects of the study of fuel cells: electrochemical impedance spectroscopy (EIS). This comprehensive reference on EIS fundamentals and applications in fuel cells contains information about basic principles, measurements, and fuel cell applications of the EIS technique. Many illustrated examples are provided to ensure maximum clarity and observability of the spectra. "Electrochemical Impedance Spectroscopy in PEM Fuel Cells" will enable readers to explore the frontiers of EIS technology in PEM fuel cell research and other electrochemical systems. As well as being a useful text for electrochemists, it can also help researchers who are unfamiliar with EIS to learn the technique quickly and to use it correctly in their fuel cell research. Managers or entrepreneurs may also find this book a useful guide to accessing the challenges and opportunities in fuel cell technology.

Book Fuel Cells and Hydrogen Production

Download or read book Fuel Cells and Hydrogen Production written by Timothy E. Lipman and published by Springer. This book was released on 2018-10-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expected end of the “oil age” will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today’s fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. This handbook offers concise yet comprehensive coverage of the current state of fuel cell research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types and hydrogen production technologies, and discuss materials and components for these systems. Sustainability and marketing considerations are also covered, including comparisons of fuel cells with alternative technologies.

Book Polymer Electrolyte Fuel Cells

Download or read book Polymer Electrolyte Fuel Cells written by Michael Eikerling and published by CRC Press. This book was released on 2014-09-23 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the op

Book PEM Fuel Cells

    Book Details:
  • Author : Gurbinder Kaur
  • Publisher : Elsevier
  • Release : 2021-11-16
  • ISBN : 0128237090
  • Pages : 584 pages

Download or read book PEM Fuel Cells written by Gurbinder Kaur and published by Elsevier. This book was released on 2021-11-16 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application provides a comprehensive introduction to the principles of PEM fuel cell, their working condition and application, and the latest breakthroughs and challenges for fuel cell technology. Each chapter follows a systematic and consistent structure with clear illustrations and diagrams for easy understanding. The opening chapters address the basics of PEM technology; stacking and membrane electrode assembly for PEM, degradation mechanisms of electrocatalysts, platinum dissolution and redeposition, carbon-support corrosion, bipolar plates and carbon nanotubes for the PEM, and gas diffusion layers. Thermodynamics, operating conditions, and electrochemistry address fuel cell efficiency and the fundamental workings of the PEM. Instruments and techniques for testing and diagnosis are then presented alongside practical tests. Dedicated chapters explain how to use MATLAB and COMSOL to conduct simulation and modeling of catalysts, gas diffusion layers, assembly, and membrane. Degradation and failure modes are discussed in detail, providing strategies and protocols for mitigation. High-temperature PEMs are also examined, as are the fundamentals of EIS. Critically, the environmental impact and life cycle of the production and storage of hydrogen are addressed, as are the risk and durability issues of PEMFC technology. Dedicated chapters are presented on the economics and commercialization of PEMFCs, including discussion of installation costs, initial capital costs, and the regulatory frameworks; apart from this, there is a separate chapter on their application to the automotive industry. Finally, future challenges and applications are considered. PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application provides an in-depth and comprehensive reference on every aspect of PEM fuel cells fundamentals, ideal for researchers, graduates, and students. Presents the fundamentals of PEM fuel cell technology, electrolytes, membranes, modeling, conductivity, recent trends, and future applications Addresses commercialization, public policy, and the environmental impacts of PEMFC in dedicated chapters Presents state-of-the-art PEMFC research alongside the underlying concepts

Book Polymer Electrolyte Fuel Cell Degradation

Download or read book Polymer Electrolyte Fuel Cell Degradation written by Matthew M. Mench and published by Academic Press. This book was released on 2012 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: For full market implementation of PEM fuel cells to become a reality, two main limiting technical issues must be overcome- cost and durability. This cutting-edge volume directly addresses the state-of-the-art advances in durability within every fuel cell stack component. [...] chapters on durability in the individual fuel cell components -- membranes, electrodes, diffusion media, and bipolar plates -- highlight specific degradation modes and mitigation strategies. The book also includes chapters which synthesize the component-related failure modes to examine experimental diagnostics, computational modeling, and laboratory protocol"--Back cover.