Download or read book A Beginner s Guide to Medical Application Development with Deep Convolutional Neural Networks written by Snehan Biswas and published by CRC Press. This book was released on 2024-12-02 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a source of introductory material and reference for medical application development and related technologies by providing the detailed implementation of cutting-edge deep learning methodologies. It targets cloud-based advanced medical application developments using open-source Python-based deep learning libraries. It includes code snippets and sophisticated convolutional neural networks to tackle real-world problems in medical image analysis and beyond. Features: Provides programming guidance for creation of sophisticated and reliable neural networks for image processing. Incorporates the comparative study on GAN, stable diffusion, and its application on medical image data augmentation. Focuses on solving real-world medical imaging problems. Discusses advanced concepts of deep learning along with the latest technology such as GPT, stable diffusion, and ViT. Develops applicable knowledge of deep learning using Python programming, followed by code snippets and OOP concepts. This book is aimed at graduate students and researchers in medical data analytics, medical image analysis, signal processing, and deep learning.
Download or read book A Beginner Guide to Medical Application Development with Deep Convolutional Neural Networks written by Snehan Biswas and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book serves as source of introductory material and reference for medical application development and related technologies by providing the detail implementation of the cutting-edge deep learning methodologies. It targets the cloud based advanced medical application developments using open-source python based deep learning libraries. It includes code snippets and sophisticated Convolutional Neural Networks (CNNs) to tackle real-world problems in medical image analysis and beyond. The book provides programming guidance for creation of sophisticated and reliable neural networks for image processing and incorporates the comparative study on GAN, Stable diffusion and its application on Medical Image data augmentation. It focusses on solving real world medical imaging problems and discuses advanced concepts of Deep Learning along with latest technology like GPT, Stable Diffusion, ViT. This book is aimed at graduate students and researchers in medical data analytics, medical image analysis, signal processing, and deep learning"--
Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Download or read book Deep Learning in Medical Image Analysis written by Gobert Lee and published by Springer Nature. This book was released on 2020-02-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.
Download or read book Deep Learning in Healthcare written by Yen-Wei Chen and published by Springer. This book was released on 2019-11-27 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of deep learning (DL) in medical and healthcare applications, including the fundamentals and current advances in medical image analysis, state-of-the-art DL methods for medical image analysis and real-world, deep learning-based clinical computer-aided diagnosis systems. Deep learning (DL) is one of the key techniques of artificial intelligence (AI) and today plays an important role in numerous academic and industrial areas. DL involves using a neural network with many layers (deep structure) between input and output, and its main advantage of is that it can automatically learn data-driven, highly representative and hierarchical features and perform feature extraction and classification on one network. DL can be used to model or simulate an intelligent system or process using annotated training data. Recently, DL has become widely used in medical applications, such as anatomic modelling, tumour detection, disease classification, computer-aided diagnosis and surgical planning. This book is intended for computer science and engineering students and researchers, medical professionals and anyone interested using DL techniques.
Download or read book Computer Vision In Medical Imaging written by Chi Hau Chen and published by World Scientific. This book was released on 2013-11-18 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.
Download or read book A Beginner s Guide to Introduce Artificial Intelligence in Teaching and Learning written by Muralidhar Kurni and published by Springer Nature. This book was released on 2023-06-28 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reimagines education in today’s Artificial Intelligence (AI) world and the Fourth Industrial Revolution. Artificial intelligence will drastically affect every industry and sector, and education is no exception. This book aims at how AI may impact the teaching and learning process in education. This book is designed to demystify AI for teachers and learners. This book will help improve education and support institutions in the phenomena of the emergence of AI in teaching and learning. This book presents a comprehensive study of how AI improves teaching and learning, from AI-based learning platforms to AI-assisted proctored examinations. This book provides educators, learners, and administrators on how AI makes sense in their everyday practice. Describing the application of AI in ten key aspects, this comprehensive volume prepares educational leaders, designers, researchers, and policymakers to effectively rethink the teaching and learning process and environments that students need to thrive. The readers of this book never fall behind the fast pace and promising innovations of today’s most advanced learning technology.
Download or read book Advancement of Intelligent Computational Methods and Technologies written by O.P. Verma and published by CRC Press. This book was released on 2024-06-30 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The compiled volume originates from the notable contributions presented at the 1st International Conference on Advancementof Intelligent Computational Methods and Technologies (AICMT2023), which took place in a hybrid format on June 27, 2023,at Delhi Technical Campus, Greater Noida, Uttar Pradesh, India. This comprehensive collection serves as an exploration into the dynamic domain of intelligent computational methods and technologies, offering insights into the latest and upcoming trends in computation methods. AICMT2023’s scope encompasses the evolutionary trajectory of computational methods, addressing pertinent issues in real time implementation, delving into the emergence of new intelligent technologies, exploring next-generation problem-solving methodologies, and other interconnected areas. The conference is strategically designed to spotlight current research trendswithin the field, fostering a vibrant research culture and contributing to the collective knowledge base.
Download or read book Deep Learning Applications Volume 2 written by M. Arif Wani and published by Springer. This book was released on 2020-12-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
Download or read book Practical Guide to Simulation in Delivery Room Emergencies written by Gilda Cinnella and published by Springer Nature. This book was released on 2023-06-13 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the use of hybrid simulation in delivery room emergencies is described and shown. The use of a patient actor combined with a task trainer within the same session substantially improve the training for practical management of intrapartum emergencies in real life, reducing the risk of failure of operative vaginal delivery and of related adverse events, including perinatal or maternal complications. Furthermore, simulation with high reality computerized mannequin and scenography of emergency situation can improve technical and manual skills of the participants. For this book and the related videos, a new generation of mannequins suitable for both clinical manoeuvres and ultrasound examination is used to simulate all clinical scenarios of emergency that can happen in the delivery room for both the mother and the child. This unique book is a useful tool for medical students, residents, practicing pediatricians, anesthetists, obstetricians and all health care professionals working in the delivery room in their ability to deal with critical and emergency situations with safety and good medical practice.
Download or read book Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning written by Segall, Richard S. and published by IGI Global. This book was released on 2022-01-07 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines.
Download or read book ICT Analysis and Applications written by Simon Fong and published by Springer Nature. This book was released on 2022-01-07 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes new technologies and discusses future solutions for ICT design infrastructures, as reflected in high-quality papers presented at the 6th International Conference on ICT for Sustainable Development (ICT4SD 2021), held in Goa, India, on 5–6 August 2021. The book covers the topics such as big data and data mining, data fusion, IoT programming toolkits and frameworks, green communication systems and network, use of ICT in smart cities, sensor networks and embedded system, network and information security, wireless and optical networks, security, trust, and privacy, routing and control protocols, cognitive radio and networks, and natural language processing. Bringing together experts from different countries, the book explores a range of central issues from an international perspective.
Download or read book Deep Learning written by Dulani Meedeniya and published by CRC Press. This book was released on 2023-10-16 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on deep learning (DL), which is an important aspect of data science, that includes predictive modeling. DL applications are widely used in domains such as finance, transport, healthcare, automanufacturing, and advertising. The design of the DL models based on artificial neural networks is influenced by the structure and operation of the brain. This book presents a comprehensive resource for those who seek a solid grasp of the techniques in DL. Key features: • Provides knowledge on theory and design of state-of-the-art deep learning models for real-world applications. • Explains the concepts and terminology in problem-solving with deep learning. • Explores the theoretical basis for major algorithms and approaches in deep learning. • Discusses the enhancement techniques of deep learning models. • Identifies the performance evaluation techniques for deep learning models. Accordingly, the book covers the entire process flow of deep learning by providing awareness of each of the widely used models. This book can be used as a beginners’ guide where the user can understand the associated concepts and techniques. This book will be a useful resource for undergraduate and postgraduate students, engineers, and researchers, who are starting to learn the subject of deep learning.
Download or read book Intelligent Computing Techniques in Biomedical Imaging written by Bikesh Kumar Singh and published by Elsevier. This book was released on 2024-08-23 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Computing Techniques in Biomedical Imaging provides comprehensive and state-of-the-art applications of Computational Intelligence techniques used in biomedical image analysis for disease detection and diagnosis. The book offers readers a stepwise approach from fundamental to advanced techniques using real-life medical examples and tutorials. The editors have divided the book into five sections, from prerequisites to case studies.Section I presents the prerequisites, where the reader will find fundamental concepts needed for advanced topics covered later in this book. This primarily includes a thorough introduction to Artificial Intelligence, probability theory and statistical learning. The second section covers Computational Intelligence methods for medical image acquisition and pre-processing for biomedical images. In this section, readers will find AI applied to conventional and advanced biomedical imaging modalities such as X-rays, CT scan, MRI, Mammography, Ultrasound, MR Spectroscopy, Positron Emission Tomography (PET), Ultrasound Elastography, Optical Coherence Tomography (OCT), Functional MRI, Hybrid Modalities, as well as pre-processing topics such as medical image enhancement, segmentation, and compression. Section III covers description and representation of medical images. Here the reader will find various categories of features and their relevance in different medical imaging tasks. This section also discusses feature selection techniques based on filter method, wrapper method, embedded method, and more.The fourth section covers Computational Intelligence techniques used for medical image classification, including Artificial Neural Networks, Support Vector Machines, Decision Trees, Nearest Neighbor Classifiers, Random Forest, clustering, extreme learning, Convolution Neural Networks (CNN), and Recurrent Neural Networks. This section also includes a discussion of computer aided diagnosis and performance evaluation in radiology.The final section of Intelligent Computing Techniques in Biomedical Imaging provides readers with a wealth of real-world Case Studies for Computational Intelligence techniques in applications such as neuro-developmental disorders, brain tumor detection, breast cancer detection, bone fracture detection, pulmonary imaging, thyroid disorders, imaging technologies in dentistry, diagnosis of ocular diseases, cardiovascular imaging, and multimodal imaging. - Introduces Fourier theory and signal analysis tailored to applications in optical communications devices and systems - Provides strong theoretical background, making it a ready resource for researchers and advanced students in optical communication and optical signal processing - Starts from basic theory and then develops descriptions of useful applications
Download or read book Python Programming Deep Learning written by Anthony Adams and published by Anthony Adams. This book was released on 2021-12-17 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easily Boost Your Skills In Python Programming & Become A Master In Deep Learning & Data Analysis! 💻 Python is an interpreted, high-level, general-purpose programming language that emphasizes code readability with its notable use of significant whitespace. What makes Python so popular in the IT industry is that it uses an object-oriented approach, which enables programmers to write clear, logical code for all types of projects, whether big or small. Hone your Python Programming skills and gain a sharp edge over other programmers the EASIEST way possible... with this practical beginner’s guide! In his 3-in-1 Python crash course for beginners, Anthony Adams gives novices like you simple, yet efficient tips and tricks to become a MASTER in Python coding for artificial intelligence, neural networks, machine learning, and data science/analysis! Here’s what you’ll get: ✅ Highly innovative ways to boost your understanding of Python programming, data analysis, and machine learning ✅ Quickly and effectively stop fraud with machine learning ✅ Practical and efficient exercises that make understanding Python quick & easy And so much more! As a beginner, you might feel a bit intimidated by the complexities of coding. Add the fact that most Python Programming crash course guides make learning harder than it has to be! ✓ With the help of this 3-in-1 guide, you will be given carefully sequenced Python Programming lessons that’ll maximize your understanding, and equip you with all the skills for real-life application! ★ Thrive in the IT industry with this comprehensive Python Programming crash course! ★ Scroll up, Click on “Buy Now”, and Start Learning Today!
Download or read book Handbook of Computational Intelligence in Biomedical Engineering and Healthcare written by Janmenjoy Nayak and published by Academic Press. This book was released on 2021-04-08 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
Download or read book Deep Learning for Medical Image Analysis written by S. Kevin Zhou and published by Academic Press. This book was released on 2023-11-23 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache