EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book 2001 IEEE Radiation Effects Data Workshop

Download or read book 2001 IEEE Radiation Effects Data Workshop written by IEEE Nuclear and Plasma Sciences Society and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 2001 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the conference proceedings of the 2001 38th Annual Nuclear and Space Radiation Effects Conference.

Book NSREC 2001  Vancouver B C

Download or read book NSREC 2001 Vancouver B C written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 2002 IEEE Radiation Effects Data Workshop

Download or read book 2002 IEEE Radiation Effects Data Workshop written by and published by . This book was released on 2002 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices

Download or read book Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices written by Dan M. Fleetwood and published by World Scientific. This book was released on 2004 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metalOCooxideOCosemiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes the background material necessary for understanding radiation effects at a more general level. Contents: Single Event Effects in Avionics and on the Ground (E Normand); Soft Errors in Commercial Integrated Circuits (R C Baumann); System Level Single Event Upset Mitigation Strategies (W F Heidergott); Space Radiation Effects in Optocouplers (R A Reed et al.); The Effects of Space Radiation Exposure on Power MOSFETs: A Review (K Shenai et al.); Total Dose Effects in Linear Bipolar Integrated Circuits (H J Barnaby); Hardness Assurance for Commercial Microelectronics (R L Pease); Switching Oxide Traps (T R Oldham); Online and Realtime Dosimetry Using Optically Stimulated Luminescence (L Dusseau & J Gasiot); and other articles. Readership: Practitioners, researchers, managers and graduate students in electrical and electronic engineering, semiconductor science and technology, and microelectronics."

Book Workshop Record  2000 IEEE Radiation Effects Data Workshop

Download or read book Workshop Record 2000 IEEE Radiation Effects Data Workshop written by IEEE Nuclear and Plasma Sciences Society and published by IEEE Computer Society Press. This book was released on 2000 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiation Tolerant Electronics

Download or read book Radiation Tolerant Electronics written by Paul Leroux and published by MDPI. This book was released on 2019-08-26 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.

Book Single Event Effects in Aerospace

Download or read book Single Event Effects in Aerospace written by Edward Petersen and published by John Wiley & Sons. This book was released on 2011-10-04 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic concepts necessary to understand Single Event phenomena which could cause random performance errors and catastrophic failures to electronics devices. As miniaturization of electronics components advances, electronics components are more susceptible in the radiation environment. The book includes a discussion of the radiation environments in space and in the atmosphere, radiation rate prediction depending on the orbit to allow electronics engineers to design and select radiation tolerant components and systems, and single event prediction.

Book Ionizing Radiation Effects in Electronics

Download or read book Ionizing Radiation Effects in Electronics written by Marta Bagatin and published by CRC Press. This book was released on 2018-09-03 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ionizing Radiation Effects in Electronics: From Memories to Imagers delivers comprehensive coverage of the effects of ionizing radiation on state-of-the-art semiconductor devices. The book also offers valuable insight into modern radiation-hardening techniques. The text begins by providing important background information on radiation effects, their underlying mechanisms, and the use of Monte Carlo techniques to simulate radiation transport and the effects of radiation on electronics. The book then: Explains the effects of radiation on digital commercial devices, including microprocessors and volatile and nonvolatile memories—static random-access memories (SRAMs), dynamic random-access memories (DRAMs), and Flash memories Examines issues like soft errors, total dose, and displacement damage, together with hardening-by-design solutions for digital circuits, field-programmable gate arrays (FPGAs), and mixed-analog circuits Explores the effects of radiation on fiber optics and imager devices such as complementary metal-oxide-semiconductor (CMOS) sensors and charge-coupled devices (CCDs) Featuring real-world examples, case studies, extensive references, and contributions from leading experts in industry and academia, Ionizing Radiation Effects in Electronics: From Memories to Imagers is suitable both for newcomers who want to become familiar with radiation effects and for radiation experts who are looking for more advanced material or to make effective use of beam time.

Book Integrated Circuit Design for Radiation Environments

Download or read book Integrated Circuit Design for Radiation Environments written by Stephen J. Gaul and published by John Wiley & Sons. This book was released on 2019-12-03 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.

Book Radiation Effects in Semiconductors

Download or read book Radiation Effects in Semiconductors written by Krzysztof Iniewski and published by CRC Press. This book was released on 2018-09-03 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Space applications, nuclear physics, military operations, medical imaging, and especially electronics (modern silicon processing) are obvious fields in which radiation damage can have serious consequences, i.e., degradation of MOS devices and circuits. Zeroing in on vital aspects of this broad and complex topic, Radiation Effects in Semiconductors addresses the ever-growing need for a clear understanding of radiation effects on semiconductor devices and circuits to combat potential damage it can cause. Features a chapter authored by renowned radiation authority Lawrence T. Clark on Radiation Hardened by Design SRAM Strategies for TID and SEE Mitigation This book analyzes the radiation problem, focusing on the most important aspects required for comprehending the degrading effects observed in semiconductor devices, circuits, and systems when they are irradiated. It explores how radiation interacts with solid materials, providing a detailed analysis of three ways this occurs: Photoelectric effect, Compton effect, and creation of electron-positron pairs. The author explains that the probability of these three effects occurring depends on the energy of the incident photon and the atomic number of the target. The book also discusses the effects that photons can have on matter—in terms of ionization effects and nuclear displacement Written for post-graduate researchers, semiconductor engineers, and nuclear and space engineers with some electronics background, this carefully constructed reference explains how ionizing radiation is creating damage in semiconducting devices and circuits and systems—and how that damage can be avoided in areas such as military/space missions, nuclear applications, plasma damage, and X-ray-based techniques. It features top-notch international experts in industry and academia who address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.

Book Radiation Effects in Advanced Semiconductor Materials and Devices

Download or read book Radiation Effects in Advanced Semiconductor Materials and Devices written by C. Claeys and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.

Book Silicon Nitride  Silicon Dioxide  and Emerging Dielectrics 9

Download or read book Silicon Nitride Silicon Dioxide and Emerging Dielectrics 9 written by Ram Ekwal Sah and published by The Electrochemical Society. This book was released on 2007 with total page 863 pages. Available in PDF, EPUB and Kindle. Book excerpt: This issue of ECS Transactions contains the papers presented in the symposium on Silicon Nitride, Silicon Dioxide Thin Insulating Films, and Emerging Dielectics held May 6-11, 2007 in Chicago. Papers were presented on deposition, characterization and applications of the dielectrics including high- and low-k dielectrics, as well as interface states, device characterization, reliabiliy and modeling.

Book Optical Waveguide Sensing and Imaging

Download or read book Optical Waveguide Sensing and Imaging written by Wojtek J. Bock and published by Springer Science & Business Media. This book was released on 2007-12-14 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book explores various aspects of existing and emerging fiber and waveguide optics sensing and imaging technologies including recent advances in nanobiophotonics. The focus is both on fundamental and applied research as well as on applications in civil engineering, biomedical sciences, environment, security and defence. The book aims to provide a reference of state-of-the-art overviews covering a variety of topics on the interface of engineering and biomedical sciences.

Book Extreme Environment Electronics

Download or read book Extreme Environment Electronics written by John D. Cressler and published by CRC Press. This book was released on 2017-12-19 with total page 1044 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.

Book Silicon Heterostructure Handbook

Download or read book Silicon Heterostructure Handbook written by John D. Cressler and published by CRC Press. This book was released on 2018-10-03 with total page 1248 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extraordinary combination of material science, manufacturing processes, and innovative thinking spurred the development of SiGe heterojunction devices that offer a wide array of functions, unprecedented levels of performance, and low manufacturing costs. While there are many books on specific aspects of Si heterostructures, the Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained-Layer Epitaxy is the first book to bring all aspects together in a single source. Featuring broad, comprehensive, and in-depth discussion, this handbook distills the current state of the field in areas ranging from materials to fabrication, devices, CAD, circuits, and applications. The editor includes "snapshots" of the industrial state-of-the-art for devices and circuits, presenting a novel perspective for comparing the present status with future directions in the field. With each chapter contributed by expert authors from leading industrial and research institutions worldwide, the book is unequalled not only in breadth of scope, but also in depth of coverage, timeliness of results, and authority of references. It also includes a foreword by Dr. Bernard S. Meyerson, a pioneer in SiGe technology. Containing nearly 1000 figures along with valuable appendices, the Silicon Heterostructure Handbook authoritatively surveys materials, fabrication, device physics, transistor optimization, optoelectronics components, measurement, compact modeling, circuit design, and device simulation.

Book Silicon Heterostructure Devices

Download or read book Silicon Heterostructure Devices written by John D. Cressler and published by CRC Press. This book was released on 2018-10-03 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: SiGe HBTs are the most mature of the Si heterostructure devices and not surprisingly the most completely researched and discussed in the technical literature. However, new effects and nuances of device operation are uncovered year-after-year as transistor scaling advances and application targets march steadily upward in frequency and sophistication. Providing a comprehensive treatment of SiGe HBTs, Silicon Heterostructure Devices covers an amazingly diverse set of topics, ranging from basic transistor physics to noise, radiation effects, reliability, and TCAD simulation. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this text explores SiGe heterojunction bipolar transistors (HBTs), heterostructure FETs, various other heterostructure devices, as well as optoelectronic components. The book provides an overview, characteristics, and derivative applications for each device covered. It discusses device physics, broadband noise, performance limits, reliability, engineered substrates, and self-assembling nanostructures. Coverage of optoelectronic devices includes Si/SiGe LEDs, near-infrared detectors, photonic transistors for integrated optoelectronics, and quantum cascade emitters. In addition to this substantial collection of material, the book concludes with a look at the ultimate limits of SiGe HBTs scaling. It contains easy-to-reference appendices on topics including the properties of silicon and germanium, the generalized Moll-Ross relations, and the integral charge-control model, and sample SiGe HBT compact model parameters.

Book Terrestrial Radiation Effects in ULSI Devices and Electronic Systems

Download or read book Terrestrial Radiation Effects in ULSI Devices and Electronic Systems written by Eishi H. Ibe and published by John Wiley & Sons. This book was released on 2015-03-02 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. The author covers faults and failures in ULSI devices induced by a wide variety of radiation fields, including electrons, alpha-rays, muons, gamma rays, neutrons and heavy ions. Readers will learn how to make numerical models from physical insights, to determine the kind of mathematical approaches that should be implemented to analyze radiation effects. A wide variety of prediction, detection, characterization and mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them, and explains how electronic systems including servers and routers are shut down due to environmental radiation. Provides an understanding of how electronic systems are shut down due to environmental radiation by constructing physical models and numerical algorithms Covers both terrestrial and avionic-level conditions Logically presented with each chapter explaining the background physics to the topic followed by various modelling techniques, and chapter summary Written by a widely-recognized authority in soft-errors in electronic devices Code samples available for download from the Companion Website This book is targeted at researchers and graduate students in nuclear and space radiation, semiconductor physics and electron devices, as well as other areas of applied physics modelling. Researchers and students interested in how a variety of physical phenomena can be modelled and numerically treated will also find this book to present helpful methods.